login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023534
Numbers n such that the largest power of 2 dividing n equals 2^omega(n).
2
1, 2, 12, 20, 28, 36, 44, 52, 68, 76, 92, 100, 108, 116, 120, 124, 148, 164, 168, 172, 188, 196, 212, 236, 244, 264, 268, 280, 284, 292, 312, 316, 324, 332, 356, 360, 388, 404, 408, 412, 428, 436, 440, 452, 456, 484, 500, 504, 508, 520, 524, 548, 552, 556
OFFSET
1,2
COMMENTS
That is, numbers such that A001221(n) is equal to A007814(n).
omega(n) = A001221(n) is the number of distinct primes dividing n.
And A007814(n) is the exponent of the highest power of 2 dividing n.
LINKS
EXAMPLE
omega(12)=2 and 4=2^2 is the largest power of 2 dividing 12, hence 12 is in the sequence.
MATHEMATICA
Select[Range[600], IntegerExponent[#, 2]==PrimeNu[#]&] (* Harvey P. Dale, Jun 26 2011 *)
PROG
(PARI) isok(n) = omega(n) == valuation(n, 2); \\ Michel Marcus, Apr 16 2015
(Python)
from itertools import count, islice
from sympy.ntheory.factor_ import primenu
def A023534_gen(startvalue=1): # generator of terms
return filter(lambda n:(~n & n-1).bit_length() == primenu(n), count(max(startvalue, 1)))
A023534_list = list(islice(A023534_gen(), 30)) # Chai Wah Wu, Jul 05 2022
CROSSREFS
Cf. A039700, A001221 (omega), A007814 (2-adic valuation).
Sequence in context: A137311 A032407 A136725 * A286683 A326238 A226399
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 04 2002
STATUS
approved