The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023347 Primes which remain prime through 5 iterations of function f(x) = 8x + 1. 3
831167, 1154567, 2502767, 3019787, 3675197, 5056577, 6352487, 14519177, 26724377, 43003577, 47378927, 47695607, 56406197, 86332457, 86611757, 99568757, 121967987, 126435527, 127990997, 128149127, 128975057, 145281557, 155715407 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
{p, 8p+1, 64p+9, 512p+73, 4096p+585, 32768p+4681} are all primes, where the initial p is prime.
a(n) == 197 (mod 210). - John Cerkan, Nov 04 2016
EXAMPLE
First chain is {831167, 6649337, 53194697, 425557577, 3404460617, 27235684937};
If p is congruent to {1,3,7,9} mod 10, then consecutive iterates are congruent to {9,5,7,3}, {3,1,7,5}, {5,9,7,1} respectively; so only 10k+7 may remain prime through five iterations, as sequence demonstrates nicely. - Labos Elemer, Jul 23 2003
MATHEMATICA
k=0; m=8; Do[s=Prime[n]; s1=m*s+1; s2=m*s1+1; s3=m*s2+1; s4=m*s3+1; s5=m*s4+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3] &&primeQ[s4]&&PrimeQ[s5], k=k+1; Print[{k, n, s, s1, s2, s3, s4, s5}]], {n, 1, 1000000}]
it5Q[n_]:=AllTrue[Rest[NestList[8#+1&, n, 5]], PrimeQ]; Select[Prime[Range[ 9*10^6]], it5Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 12 2014 *)
CROSSREFS
Subsequence of A005123, A023228, A023260, A023291, and A023319.
Sequence in context: A131684 A234403 A086128 * A246913 A215343 A063875
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 00:41 EDT 2024. Contains 373468 sequences. (Running on oeis4.)