login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023009
Number of partitions of n into parts of 10 kinds.
3
1, 10, 65, 330, 1430, 5512, 19415, 63570, 195910, 573430, 1605340, 4322110, 11240645, 28341730, 69488650, 166096270, 387890625, 886698670, 1987322415, 4373271870, 9461022285, 20144164040, 42254620785, 87398226990, 178396331100, 359618772656, 716409453320
OFFSET
0,2
COMMENTS
a(n) is Euler transform of A010692. - Alois P. Heinz, Oct 17 2008
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{m>=1} 1/(1-x^m)^10.
a(n) ~ 5^(11/4) * exp(2 * Pi * sqrt(5*n/3)) / (64 * 3^(11/4) * n^(13/4)). - Vaclav Kotesovec, Feb 28 2015
a(0) = 1, a(n) = (10/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(10*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
MAPLE
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*10, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^10, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *)
CROSSREFS
Cf. 10th column of A144064. - Alois P. Heinz, Oct 17 2008
Sequence in context: A341387 A133715 A160458 * A169797 A073381 A092441
KEYWORD
nonn
STATUS
approved