login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts of 10 kinds.
3

%I #28 Feb 06 2018 09:07:23

%S 1,10,65,330,1430,5512,19415,63570,195910,573430,1605340,4322110,

%T 11240645,28341730,69488650,166096270,387890625,886698670,1987322415,

%U 4373271870,9461022285,20144164040,42254620785,87398226990,178396331100,359618772656,716409453320

%N Number of partitions of n into parts of 10 kinds.

%C a(n) is Euler transform of A010692. - _Alois P. Heinz_, Oct 17 2008

%H Seiichi Manyama, <a href="/A023009/b023009.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)

%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F G.f.: Product_{m>=1} 1/(1-x^m)^10.

%F a(n) ~ 5^(11/4) * exp(2 * Pi * sqrt(5*n/3)) / (64 * 3^(11/4) * n^(13/4)). - _Vaclav Kotesovec_, Feb 28 2015

%F a(0) = 1, a(n) = (10/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017

%F G.f.: exp(10*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 06 2018

%p with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*10, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 17 2008

%t nmax=50; CoefficientList[Series[Product[1/(1-x^k)^10,{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Feb 28 2015 *)

%Y Cf. 10th column of A144064. - _Alois P. Heinz_, Oct 17 2008

%K nonn

%O 0,2

%A _David W. Wilson_