login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022912
Arrange the nontrivial binomial coefficients C(m,k) (2 <= k <= m/2) in increasing order (not removing duplicates); record the sequence of k's.
6
2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 3, 5, 2, 4, 2, 2, 3, 2, 2, 2, 2, 3, 2, 4, 2, 2, 5, 3, 2, 2, 2, 6, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 6, 2, 3, 4, 2, 2, 2, 5, 2, 3, 2, 2, 2
OFFSET
1,1
COMMENTS
In case of duplicates, the k values are listed in increasing order. Thus a(18)=2 and a(19)=3 corresponding to binomial(16,2)=binomial(10,3)=120.
LINKS
FORMULA
A319382(n) = binomial(A022911(n),a(n)). - Robert Israel, Sep 18 2018
MAPLE
N:= 10000: # for binomial(n, k) values <= N
Res:= NULL:
for n from 2 while n*(n-1)/2 <= N do
for k from 2 to n/2 do
v:= binomial(n, k);
if v > N then break fi;
Res:= Res, [v, n, k]
od od:
Res:= sort([Res], proc(p, q) if p[1]<>q[1] then p[1]<q[1]
elif p[2]<>q[2] then p[2]>q[2]
fi end proc): map(t -> t[3], Res); # Robert Israel, Sep 18 2018
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Corrected by Robert Israel, Sep 18 2018
STATUS
approved