login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022341 Odd Fibbinary numbers; also 4*Fibbinary(n) + 1. 3
1, 5, 9, 17, 21, 33, 37, 41, 65, 69, 73, 81, 85, 129, 133, 137, 145, 149, 161, 165, 169, 257, 261, 265, 273, 277, 289, 293, 297, 321, 325, 329, 337, 341, 513, 517, 521, 529, 533, 545, 549, 553, 577, 581, 585, 593, 597, 641, 645, 649, 657, 661, 673, 677, 681 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Numbers n such that (n+1) does not divide C(3n,n)-C(2n,n). - Benoit Cloitre, May 23 2004

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

Estelle Basor, Brian Conrey, Kent E. Morrison, Knots and ones, arXiv:1703.00990 [math.GT], 2017. See page 2.

L. Lindroos, A. Sills and H. Wang, Odd fibbinary numbers and the golden ration, Fib. Q., 52 (2014), 61-65.

L. Lindroos, A. Sills and H. Wang, Odd fibbinary numbers and the golden ration, Fib. Q., 52 (2014), 61-65.

MAPLE

F:= combinat[fibonacci]:

b:= proc(n) local j;

      if n=0 then 0

    else for j from 2 while F(j+1)<=n do od;

         b(n-F(j))+2^(j-2)

      fi

    end:

a:= n-> 4*b(n)+1:

seq(a(n), n=0..70);  # Alois P. Heinz, May 15 2016

MATHEMATICA

Select[Range[1, 511, 2], BitAnd[#, 2#] == 0 &] (* Alonso del Arte, Jun 18 2012 *)

PROG

(Python)

for n in range(1, 700, 2):

    if n*2 & n == 0:

        print str(n)+', ',

CROSSREFS

Cf. A003714, A000846, A022340.

Sequence in context: A097538 A001771 A288448 * A255651 A216877 A268756

Adjacent sequences:  A022338 A022339 A022340 * A022342 A022343 A022344

KEYWORD

nonn

AUTHOR

Marc LeBrun

EXTENSIONS

More terms from Benoit Cloitre, May 23 2004 and Alonso del Arte, Jun 18 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 09:36 EST 2018. Contains 299448 sequences. (Running on oeis4.)