OFFSET
0,1
COMMENTS
Not to be confused with the Pisot T(16,32) sequence, which is essentially A000079. - R. J. Mathar, Feb 13 2016
Apparently a(n) = A019489(n+2) = A077852(n+3) (Barker's recurrence) for n >= 0. - Georg Fischer, Mar 23 2019
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
Empirical G.f.: (16-12*x+4*x^2-7*x^3)/(1-3*x+2*x^2-x^3+x^4). - Colin Barker, Feb 16 2012
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for n>0. - Bruno Berselli, Feb 15 2016
PROG
(PARI) T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
T(16, 36, 30) \\ Colin Barker, Feb 16 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved