The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020983 Expansion of 1/((1-9*x)*(1-10*x)*(1-12*x)). 1
 1, 31, 643, 11155, 174811, 2566291, 36012523, 489103555, 6481822171, 84295081651, 1080159920203, 13679489505955, 171612008243131, 2136467306462611, 26431716545456683, 325327578356628355, 3987253758579873691, 48696950467661485171, 593012553894264829963 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..920 Index entries for linear recurrences with constant coefficients, signature (31,-318,1080) FORMULA a(n) = 31*a(n-1) - 318*a(n-2) + 1080*a(n-3), n >= 3. - Vincenzo Librandi, Mar 18 2011 a(n) = 22*a(n-1) - 120*a(n-2) + 9^n, n >= 2. - Vincenzo Librandi, Mar 18 2011 a(n) = -5*10^(n+1) + 3*9^(n+1) + 2*12^(n+1). - R. J. Mathar, Mar 20 2011 MATHEMATICA CoefficientList[Series[1/((1-9*x)*(1-10*x)*(1-12*x)), {x, 0, 50}], x] (* G. C. Greubel, Feb 09 2018 *) LinearRecurrence[{31, -318, 1080}, {1, 31, 643}, 20] (* Robert G. Wilson v, Feb 11 2018 *) PROG (PARI) x='x+O('x^30); Vec(1/((1-9*x)*(1-10*x)*(1-12*x))) \\ G. C. Greubel, Feb 09 2018 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-9*x)*(1-10*x)*(1-12*x)))); // G. C. Greubel, Feb 09 2018 CROSSREFS Sequence in context: A028004 A025007 A024446 * A020981 A006097 A000565 Adjacent sequences:  A020980 A020981 A020982 * A020984 A020985 A020986 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 22:44 EST 2021. Contains 349590 sequences. (Running on oeis4.)