login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020982
Expansion of 1/((1-9*x)*(1-10*x)*(1-11*x)).
1
1, 30, 601, 10050, 151501, 2135070, 28702801, 372684090, 4712104501, 58346365110, 710428956601, 8532288986130, 101313313019101, 1191569650755150, 13901375026212001, 161062105099480170
OFFSET
0,2
FORMULA
If we define f(m,j,x) = Sum_{k=j..m} (binomial(m,k)*stirling2(k,j)*x^(m-k)) then a(n-2)=f(n,2,9), (n>=2). - Milan Janjic, Apr 26 2009
a(n) = 30*a(n-1) -299*a(n-2) +990*a(n-3), n>=3. - Vincenzo Librandi, Mar 18 2011
a(n) = 21*a(n-1) -110*a(n-2) +9^n, n>=2. - Vincenzo Librandi, Mar 18 2011
a(n) = 11^(n+2)/2+9^(n+2)/2-10^(n+2). - R. J. Mathar, Mar 20 2011
MATHEMATICA
CoefficientList[Series[1/((1-9x)(1-10x)(1-11x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{30, -299, 990}, {1, 30, 601}, 20] (* Harvey P. Dale, Jan 30 2013 *)
PROG
(PARI) x='x+O('x^30); Vec(1/((1-9*x)*(1-10*x)*(1-11*x))) \\ G. C. Greubel, Feb 09 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-9*x)*(1-10*x)*(1-11*x)))); // G. C. Greubel, Feb 09 2018
CROSSREFS
Sequence in context: A026308 A081140 A131206 * A024436 A042744 A020980
KEYWORD
nonn
STATUS
approved