|
|
A020899
|
|
Odd number of terms in Zeckendorf representation of n (write n as a sum of non-consecutive distinct Fibonacci numbers).
|
|
12
|
|
|
1, 2, 3, 5, 8, 12, 13, 17, 19, 20, 21, 25, 27, 28, 30, 31, 32, 34, 38, 40, 41, 43, 44, 45, 48, 49, 50, 52, 55, 59, 61, 62, 64, 65, 66, 69, 70, 71, 73, 77, 78, 79, 81, 84, 88, 89
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A007895(a(n)) mod 2 = 1. - Reinhard Zumkeller, Mar 10 2013
|
|
REFERENCES
|
D. E. Daykin, "Representation of natural numbers as sums of generalized Fibonacci numbers," J. London Math. Soc. 35 (1960) 143-160.
C. G. Lekkerkerker, "Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci," Simon Stevin 29 (1952) 190-195.
Zeckendorf, E., Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
PROG
|
(Haskell)
a020899 n = a020899_list !! (n-1)
a020899_list = filter (odd . a007895) [1..]
-- Reinhard Zumkeller, Mar 10 2013
|
|
CROSSREFS
|
Sequence in context: A056695 A342746 A287006 * A057987 A243165 A336993
Adjacent sequences: A020896 A020897 A020898 * A020900 A020901 A020902
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling
|
|
EXTENSIONS
|
Offset corrected by Reinhard Zumkeller, Mar 10 2013
|
|
STATUS
|
approved
|
|
|
|