Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Feb 05 2023 09:24:37
%S 1,2,3,5,8,12,13,17,19,20,21,25,27,28,30,31,32,34,38,40,41,43,44,45,
%T 48,49,50,52,55,59,61,62,64,65,66,69,70,71,73,77,78,79,81,84,88,89,93,
%U 95,96,98,99,100,103,104,105,107,111,112,113,115,118,122,124,125
%N Numbers k with an odd number of terms in their Zeckendorf representation (write k as a sum of non-consecutive distinct Fibonacci numbers).
%C Numbers k such that A095076(k) = 1. - _Amiram Eldar_, Feb 05 2023
%D C. G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin 29 (1952), 190-195.
%D Edouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179-182.
%H Reinhard Zumkeller, <a href="/A020899/b020899.txt">Table of n, a(n) for n = 1..10000</a>
%H D. E. Daykin, <a href="https://doi.org/10.1112/jlms/s1-35.2.143">Representation of natural numbers as sums of generalized Fibonacci numbers</a>, J. London Math. Soc. 35 (1960), 143-160.
%F A007895(a(n)) mod 2 = 1. - _Reinhard Zumkeller_, Mar 10 2013
%t Flatten @ Position[Mod[DigitCount[Select[Range[0, 1000], BitAnd[#, 2 #] == 0 &], 2, 1], 2], 1] - 1 (* _Amiram Eldar_, Feb 05 2023 *)
%o (Haskell)
%o a020899 n = a020899_list !! (n-1)
%o a020899_list = filter (odd . a007895) [1..]
%o -- _Reinhard Zumkeller_, Mar 10 2013
%Y Cf. A007895, A014417, A095076.
%K nonn
%O 1,2
%A _Clark Kimberling_
%E Offset corrected by _Reinhard Zumkeller_, Mar 10 2013