|
|
A020896
|
|
Positive numbers k such that k = x^5 + y^5 has a solution in nonzero integers x, y.
|
|
2
|
|
|
2, 31, 33, 64, 211, 242, 244, 275, 486, 781, 992, 1023, 1025, 1056, 1267, 2048, 2101, 2882, 3093, 3124, 3126, 3157, 3368, 4149, 4651, 6250, 6752, 7533, 7744, 7775, 7777, 7808, 8019, 8800, 9031, 10901, 13682, 15552, 15783, 15961, 16564
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
68101 = (15/2)^5 + (17/2)^5 is believed to be the smallest positive integer k which is the sum of two nonzero fifth powers of rational numbers but not the sum of two nonzero fifth powers of integers.
|
|
REFERENCES
|
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 99.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..5000
Steven R. Finch, On a Generalized Fermat-Wiles Equation [broken link]
Steven R. Finch, On a Generalized Fermat-Wiles Equation [From the Wayback Machine]
|
|
FORMULA
|
See Theorem 3.5.6 of J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 99.
|
|
EXAMPLE
|
31 = 2^5 + (-1)^5.
|
|
MATHEMATICA
|
Select[Union[Total/@(Select[Tuples[Range[-8, 8], {2}], !MemberQ[#, 0]&]^5)], #>0&] (* Harvey P. Dale, Apr 03 2011 *)
|
|
CROSSREFS
|
Cf. A001481, A020897, A003336.
Sequence in context: A099189 A247099 A053234 * A042153 A267207 A102630
Adjacent sequences: A020893 A020894 A020895 * A020897 A020898 A020899
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
Steven Finch
|
|
STATUS
|
approved
|
|
|
|