login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019537
Number of special orbits for dihedral group of degree n.
2
1, 2, 4, 14, 61, 414, 3416, 34274, 394009, 5113712, 73758368, 1170495180, 20263806277, 380048113202, 7676106638884, 166114210737254, 3834434327929981, 94042629562443206, 2442147034770292496, 66942194906543381336, 1931543452346146410965, 58519191359170883258606
OFFSET
1,2
COMMENTS
a(n) is the number of ways to color a necklace of n beads using at most n colors. Turning the necklace over does not count as different. - Robert A. Russell, May 31 2018
LINKS
M. Goebel, On the number of special permutation-invariant orbits and terms, in Applicable Algebra in Engin., Comm. and Comp. (AAECC 8), Volume 8, Number 6, 1997, pp. 505-509 (Lect. Notes Comp. Sci.)
FORMULA
a(n) = Sum_{k=1..n} ((k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2 n))*Sum_{d|n} phi(d)*S2(n/d,k)), where S2(n,k) is the Stirling subset number A008277. - Robert A. Russell, May 31 2018
a(n) ~ (n-1)! / (4 * log(2)^(n+1)). - Vaclav Kotesovec, Jul 21 2019
EXAMPLE
For a(3) = 4, the necklaces are AAA, AAB, ABB, and ABC. Last one is chiral. For a(4) = 14, the necklacess are AAAA, AAAB, AABB, ABAB, ABBB, ABAC, ABCB, ACBC, AABC, ABBC, ABCC, ABCD, ABDC, and ACBD. Last six are chiral. - Robert A. Russell, May 31 2018
MATHEMATICA
Table[Sum[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] + (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {k, 1, n}], {n, 1, 40}] (* Robert A. Russell, May 31 2018 *)
PROG
(PARI) a(n) = sum(k=1, n, (k!/4)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2))); \\ Michel Marcus, Jun 06 2018
CROSSREFS
Cf. A019536.
Row sums of A273891.
Sequence in context: A047009 A027740 A132880 * A046911 A089127 A132852
KEYWORD
nonn
AUTHOR
Manfred Goebel (goebel(AT)informatik.uni-tuebingen.de)
EXTENSIONS
More terms (using A273891) from Alois P. Heinz, Jun 02 2016
STATUS
approved