login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of special orbits for dihedral group of degree n.
2

%I #24 Jul 21 2019 03:59:57

%S 1,2,4,14,61,414,3416,34274,394009,5113712,73758368,1170495180,

%T 20263806277,380048113202,7676106638884,166114210737254,

%U 3834434327929981,94042629562443206,2442147034770292496,66942194906543381336,1931543452346146410965,58519191359170883258606

%N Number of special orbits for dihedral group of degree n.

%C a(n) is the number of ways to color a necklace of n beads using at most n colors. Turning the necklace over does not count as different. - _Robert A. Russell_, May 31 2018

%H M. Goebel, <a href="http://www.informatik.uni-trier.de/~ley/db/journals/aaecc/aaecc8.html">On the number of special permutation-invariant orbits and terms</a>, in Applicable Algebra in Engin., Comm. and Comp. (AAECC 8), Volume 8, Number 6, 1997, pp. 505-509 (Lect. Notes Comp. Sci.)

%F a(n) = Sum_{k=1..n} ((k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2 n))*Sum_{d|n} phi(d)*S2(n/d,k)), where S2(n,k) is the Stirling subset number A008277. - _Robert A. Russell_, May 31 2018

%F a(n) ~ (n-1)! / (4 * log(2)^(n+1)). - _Vaclav Kotesovec_, Jul 21 2019

%e For a(3) = 4, the necklaces are AAA, AAB, ABB, and ABC. Last one is chiral. For a(4) = 14, the necklacess are AAAA, AAAB, AABB, ABAB, ABBB, ABAC, ABCB, ACBC, AABC, ABBC, ABCC, ABCD, ABDC, and ACBD. Last six are chiral. - _Robert A. Russell_, May 31 2018

%t Table[Sum[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k] &] + (k!/4) (StirlingS2[Floor[(n+1)/2],k] + StirlingS2[Ceiling[(n+1)/2],k]), {k, 1, n}], {n, 1, 40}] (* _Robert A. Russell_, May 31 2018 *)

%o (PARI) a(n) = sum(k=1, n, (k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2))); \\ _Michel Marcus_, Jun 06 2018

%Y Cf. A019536.

%Y Row sums of A273891.

%K nonn

%O 1,2

%A Manfred Goebel (goebel(AT)informatik.uni-tuebingen.de)

%E More terms (using A273891) from _Alois P. Heinz_, Jun 02 2016