login
A019465
Multiply by 1, add 1, multiply by 2, add 2, etc., start with 2.
6
2, 2, 3, 6, 8, 24, 27, 108, 112, 560, 565, 3390, 3396, 23772, 23779, 190232, 190240, 1712160, 1712169, 17121690, 17121700, 188338700, 188338711, 2260064532, 2260064544, 29380839072, 29380839085, 411331747190, 411331747204, 6169976208060, 6169976208075, 98719619329200
OFFSET
0,1
LINKS
FORMULA
From Robert Israel, Dec 22 2015: (Start)
a(2*k) = 2*k! + Sum_{j=0..k-1} k!/j! = 2*k! + k*e*Gamma(k,1).
a(2*k+1) = 2*(k+1)! + Sum_{j=0..k-1} (k+1)!/j! = 2*(k+1)! + k*(k+1)*e*Gamma(k,1).
a(n) ~ (e+2)*(ceiling(n/2))!. (End)
MAPLE
A[0]:= 2:
for n from 0 to 14 do
A[2*n+1]:= (n+1)*A[2*n];
A[2*n+2]:= (n+1)+A[2*n+1];
od:
seq(A[i], i=0..30); # Robert Israel, Dec 22 2015
MATHEMATICA
a = {2}; Do[If[EvenQ@ Length@ a, AppendTo[a, Floor[Length[a]/2] Last@ a],
AppendTo[a, Last@ a + Floor[Length[a] /2]]], {k, 27}]; Rest@ a (* Michael De Vlieger, Dec 22 2015 *)
PROG
(PARI) A019465(n, a=2)={for(i=2, n+1, if(bittest(i, 0), a+=i\2, a*=i\2)); a} \\ M. F. Hasler, Feb 25 2018
CROSSREFS
Cf. A082458 (same, but start with 0), A019465 (start with 2), A019466 (start with 3).
Cf. A019460 .. A019463 & A082448 (similar, but first add, then multiply).
Sequence in context: A100948 A035571 A079069 * A077074 A163493 A321405
KEYWORD
nonn,easy
EXTENSIONS
Edited by M. F. Hasler, Feb 25 2018
STATUS
approved