login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017897
Expansion of 1/((1-3*x)*(1-5*x)*(1-9*x)).
1
1, 17, 202, 2090, 20251, 189707, 1745332, 15900020, 144066901, 1301455397, 11737424062, 105758621150, 952437144751, 8574983669087, 77190104636392, 694787214149480, 6253466332501801, 56283104147438777, 506557473488982322, 4559064943373269010
OFFSET
0,2
LINKS
Christian Brouder, William J. Keith, and Ângela Mestre, Closed forms for a multigraph enumeration, arXiv preprint arXiv:1301.0874 [math.CO], 2013-2015.
FORMULA
a(n) = term (1,1) in the 3 X 3 matrix [17,1,0; -87,0,1; 135,0,0]^n. - Alois P. Heinz, Aug 04 2008
From Vincenzo Librandi, Jul 01 2013: (Start)
a(n) = 17*a(n-1) - 87*a(n-2) + 135*a(n-3); a(0)=1, a(1)=17, a(2)=202.
a(n) = 14*a(n-1) - 45*a(n-2) + 3^n. (End)
a(n) = (9^(n+2) - 3*5^(n+2) + 2*3^(n+2))/24. - Yahia Kahloune, Aug 13 2013
E.g.f.: exp(3*x)*(6 - 25*exp(2*x) + 27*exp(6*x))/8. - Stefano Spezia, Nov 09 2024
MAPLE
a:= n -> (Matrix(3, (i, j)-> if (i=j-1) then 1 elif j=1 then [17, -87, 135][i] else 0 fi)^n)[1, 1]: seq (a(n), n=0..25); # Alois P. Heinz, Aug 04 2008
MATHEMATICA
CoefficientList[Series[1 / ((1 - 3 x) (1 - 5 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 01 2013 *)
LinearRecurrence[{17, -87, 135}, {1, 17, 202}, 30] (* Harvey P. Dale, Sep 26 2014 *)
a[n_]:=(9^(n+2) - 3*5^(n+2) + 2*3^(n+2))/24; Array[a, 30, 0] (* Stefano Spezia, Oct 04 2018 *)
PROG
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-5*x)*(1-9*x)))); // Vincenzo Librandi, Jul 01 2013
(Magma) I:=[1, 17, 202]; [n le 3 select I[n] else 17*Self(n-1)-87*Self(n-2)+135*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 01 2013
(PARI) a(n) = (9^(n+2) - 3*5^(n+2) + 2*3^(n+2))/24; \\ Joerg Arndt, Aug 13 2013
(SageMath)
def A017897(n): return (9^(n+2) -3*5^(n+2) +2*3^(n+2))//24
[A017897(n) for n in range(41)] # G. C. Greubel, Nov 09 2024
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved