login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A017900 Expansion of 1/(1 -x^6 -x^7 -x^8 - ...). 4
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 43, 55, 71, 92, 119, 153, 196, 251, 322, 414, 533, 686, 882, 1133, 1455, 1869, 2402, 3088, 3970, 5103, 6558, 8427, 10829, 13917, 17887, 22990, 29548, 37975, 48804, 62721, 80608 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

A Lamé sequence of higher order.

Number of compositions of n into parts >=6. - Milan Janjic, Jun 28 2010

a(n+6) equals the number of n-length binary words such that 0 appears only in a run which length is a multiple of 6. - Milan Janjic, Feb 17 2015

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5

J. Hermes, Anzahl der Zerlegungen einer ganzen rationalen Zahl in Summanden, Math. Ann., 45 (1894), 371-380.

Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.

FORMULA

G.f.: 1/(1-sum(k>=6,x^k)).

G.f.: (1-x)/(1-x-x^6). - Alois P. Heinz, Aug 04 2008

For positive integers n and k such that k <= n <= 6*k, and 5 divides n-k, define c(n,k) = binomial(k,(n-k)/5), and c(n,k )= 0, otherwise. Then, for n>=1, a(n+6) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011

MAPLE

f := proc(r) local t1, i; t1 := []; for i from 1 to r do t1 := [op(t1), 0]; od: for i from 1 to r+1 do t1 := [op(t1), 1]; od: for i from 2*r+2 to 50 do t1 := [op(t1), t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order

a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [1, 0$4, 1][i], 0)))^n)[6, 6]: seq(a(n), n=0..80); # Alois P. Heinz, Aug 04 2008

MATHEMATICA

f[n_] := If[n < 1, 1, Sum[ Binomial[ n - 5 k - 5, k], {k, 0, (n - 5)/6}]]; Array[f, 49, 0] (* Adi Dani, Robert G. Wilson v, Jul 04 2011 *)

LinearRecurrence[{1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0}, 60] (* Jean-François Alcover, Feb 13 2016 *)

PROG

(PARI) Vec((1-x)/(1-x-x^6)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

For Lamé sequences of orders 1 through 9 see A000045, A000930, A017898-A017904.

Sequence in context: A328116 A193286 A098132 * A005708 A322853 A322801

Adjacent sequences:  A017897 A017898 A017899 * A017901 A017902 A017903

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 18:30 EDT 2021. Contains 345419 sequences. (Running on oeis4.)