login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017819
Expansion of 1/(1-x^3-x^4-x^5-x^6).
1
1, 0, 0, 1, 1, 1, 2, 2, 3, 5, 6, 8, 12, 16, 22, 31, 42, 58, 81, 111, 153, 212, 292, 403, 557, 768, 1060, 1464, 2020, 2788, 3849, 5312, 7332, 10121, 13969, 19281, 26614, 36734, 50703, 69985, 96598, 133332, 184036, 254020, 350618, 483951, 667986, 922006, 1272625, 1756575, 2424561, 3346568, 4619192, 6375767, 8800329, 12146896
OFFSET
0,7
COMMENTS
Number of compositions of n into parts 3, 4, 5, and 6. - David Neil McGrath, Aug 17 2014
FORMULA
a(n) = a(n-6) + a(n-5) + a(n-4) + a(n-3). - Jon E. Schoenfield, Aug 07 2006
a(n) = a(n-1) + a(n-4) + {1, -1, or 0} depending on whether n mod 3 is {0, 1, or 2}. - Barry Cipra, Mar 03 2008
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[3, 6]]), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 27 2013 *)
LinearRecurrence[{0, 0, 1, 1, 1, 1}, {1, 0, 0, 1, 1, 1}, 50] (* Harvey P. Dale, Aug 15 2014 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x^3-x^4-x^5-x^6)))); /* or */ I:=[1, 0, 0, 1, 1, 1]; [n le 6 select I[n] else Self(n-3)+Self(n-4)+Self(n-5)+Self(n-6): n in [1..50]]; // Vincenzo Librandi, Jun 27 2013
(PARI) Vec(1/(1-x^3-x^4-x^5-x^6)+ O(x^60)) \\ Michel Marcus, Aug 17 2014
CROSSREFS
Cf. A137200.
Sequence in context: A309223 A116465 A117356 * A274148 A050044 A308924
KEYWORD
nonn,easy
AUTHOR
STATUS
approved