login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1-x^3-x^4-x^5-x^6).
1

%I #32 Sep 08 2022 08:44:43

%S 1,0,0,1,1,1,2,2,3,5,6,8,12,16,22,31,42,58,81,111,153,212,292,403,557,

%T 768,1060,1464,2020,2788,3849,5312,7332,10121,13969,19281,26614,36734,

%U 50703,69985,96598,133332,184036,254020,350618,483951,667986,922006,1272625,1756575,2424561,3346568,4619192,6375767,8800329,12146896

%N Expansion of 1/(1-x^3-x^4-x^5-x^6).

%C Number of compositions of n into parts 3, 4, 5, and 6. - _David Neil McGrath_, Aug 17 2014

%H Vincenzo Librandi, <a href="/A017819/b017819.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,1,1).

%F a(n) = a(n-6) + a(n-5) + a(n-4) + a(n-3). - _Jon E. Schoenfield_, Aug 07 2006

%F a(n) = a(n-1) + a(n-4) + {1, -1, or 0} depending on whether n mod 3 is {0, 1, or 2}. - _Barry Cipra_, Mar 03 2008

%t CoefficientList[Series[1 / (1 - Total[x^Range[3, 6]]), {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 27 2013 *)

%t LinearRecurrence[{0,0,1,1,1,1},{1,0,0,1,1,1},50] (* _Harvey P. Dale_, Aug 15 2014 *)

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x^3-x^4-x^5-x^6)))); /* or */ I:=[1,0,0,1,1,1]; [n le 6 select I[n] else Self(n-3)+Self(n-4)+Self(n-5)+Self(n-6): n in [1..50]]; // _Vincenzo Librandi_, Jun 27 2013

%o (PARI) Vec(1/(1-x^3-x^4-x^5-x^6)+ O(x^60)) \\ _Michel Marcus_, Aug 17 2014

%Y Cf. A137200.

%K nonn,easy

%O 0,7

%A _N. J. A. Sloane_.