login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016186
Expansion of 1/((1-8*x)*(1-10*x)).
7
1, 18, 244, 2952, 33616, 368928, 3951424, 41611392, 432891136, 4463129088, 45705032704, 465640261632, 4725122093056, 47800976744448, 482407813955584, 4859262511644672, 48874100093157376, 490992800745259008, 4927942405962072064, 49423539247696576512, 495388313981572612096, 4963106511852580896768
OFFSET
0,2
COMMENTS
a(n) is the number of strings of n+1 decimal digits having an odd number of 0's. For 2 digits these are for example the 18 strings 01, 02, 03, ..., 09, 10, 20, 30, ..., 90. - Geoffrey Critzer, Jan 24 2011
FORMULA
From R. J. Mathar, Sep 18 2008: (Start)
a(n) = 5*10^n - 4*8^n = A081203(n+1).
Binomial transform of A081035. (End)
From Geoffrey Critzer, Jan 24 2011: (Start)
a(n) = 8*a(n-1) + 10^(n-1).
E.g.f.: exp(9*x)*sinh(x) (with offset 1). (End)
A060531(n) = a(n) - 9*a(n-1). - R. J. Mathar_, Jan 27 2011
From Vincenzo Librandi, Feb 09 2011: (Start)
a(n) = 10*a(n-1) + 8^n, a(0)=1.
a(n) = 18*a(n-1) - 80*a(n-2), a(0)=1, a(1)=18. (End)
E.g.f.: exp(9*x)*( cosh(x) + 9*sinh(x) ). - G. C. Greubel, Nov 14 2024
MATHEMATICA
Rest@With[{m=30}, CoefficientList[Series[Exp[9 x] Sinh[x], {x, 0, m}], x]*Range[0, m]!]
Table[2^n*(5^(n+1)-4^(n+1)), {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{18, -80}, {1, 18}, 30] (* Harvey P. Dale, Aug 26 2019 *)
PROG
(PARI) Vec(1/((1-8*x)*(1-10*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
(Magma) [2^n*(5^(n+1)-4^(n+1)): n in [0..40]]; // G. C. Greubel, Nov 14 2024
(SageMath)
A016186=BinaryRecurrenceSequence(18, -80, 1, 18)
print([A016186(n) for n in range(41)]) # G. C. Greubel, Nov 14 2024
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Nov 14 2024
STATUS
approved