login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015759
Numbers k such that phi(k) | sigma_2(k).
17
1, 2, 3, 6, 22, 33, 66, 750, 27798250, 41697375, 76745867, 83394750, 153491734, 207656250, 230237601, 460475202, 917342250, 969062500, 2907187500, 4528006153, 5952812500, 9056012306, 13584018459, 17858437500, 27168036918, 31979062500, 57559400250
OFFSET
1,2
COMMENTS
sigma_2(k) is the sum of the squares of the divisors of k (A001157).
All of these terms are solutions to relations for all j as follows: {sigma(j,x)/phi(x) is an integer for exponents j=4k+2}. Proof is possible by individual managements in the knowledge of divisors of x and phi(x). Compare with A015765, A015768, etc. - Labos Elemer, May 25 2004
MATHEMATICA
Do[ If[ IntegerQ[ DivisorSigma[2, n]/EulerPhi[n]], Print[n]], {n, 1, 10^7}]
Empirical test for very high power sums of divisors [e.g., d^2802]. Table[{4*j+2, Union[Table[IntegerQ[DivisorSigma[4*j+2, Part[t, k]]/EulerPhi[Part[t, k]]], {k, 1, 13}]]}, {j, 0, 700}] Output = {True} for all 4j+2. Here t=A015759. (* Labos Elemer, May 20 2004 *)
CROSSREFS
KEYWORD
nonn,changed
EXTENSIONS
a(9)-a(13) from Labos Elemer, May 20 2004
a(14)-a(18) from Donovan Johnson, Feb 05 2010
a(19)-a(27) from Donovan Johnson, Jun 18 2011
STATUS
approved