The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015275 Gaussian binomial coefficient [ n,3 ] for q = -7. 2
 1, -300, 105050, -35927100, 12328144851, -4228301370600, 1450319733570100, -497459062806004200, 170628488227082949701, -58525570007342935110900, 20074270583791406305395150, -6885474806748086165925231300 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 3..200 Index entries for linear recurrences with constant coefficients, signature (-300,15050,102900,-117649). FORMULA G.f.: x^3/((1-x)*(1+7*x)*(1-49*x)*(1+343*x)). - Bruno Berselli, Oct 30 2012 a(n) = (-1 + 43*7^(2n-3) + (-1)^n*7^(n-2)*(43-7^(2n-1)))/132096. - Bruno Berselli, Oct 30 2012 MATHEMATICA QBinomial[Range[3, 20], 3, -7] (* Harvey P. Dale, Apr 09 2012 *) Table[QBinomial[n, 3, -7], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *) PROG (Sage) [gaussian_binomial(n, 3, -7) for n in range(3, 15)] # Zerinvary Lajos, May 27 2009 (Magma) r:=3; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016 CROSSREFS Sequence in context: A190880 A063935 A294687 * A051306 A151609 A004225 Adjacent sequences: A015272 A015273 A015274 * A015276 A015277 A015278 KEYWORD sign,easy AUTHOR Olivier Gérard, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 20:11 EDT 2024. Contains 372952 sequences. (Running on oeis4.)