The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015276 Gaussian binomial coefficient [ n,3 ] for q = -8. 2
 1, -455, 236665, -120935815, 61934287481, -31709385606535, 16235267484138105, -8312452980450674055, 4255976180162154314361, -2179059787976052939572615, 1115678612484825190455949945, -571227449525600988055816521095 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 3..200 Index entries for linear recurrences with constant coefficients, signature (-455,29640,232960,-262144). FORMULA G.f.: x^3/((1-x)*(1+8*x)*(1-64*x)*(1+512*x)). - Bruno Berselli, Oct 30 2012 a(n) = (-1 + 57*8^(2n-3) + (-1)^n*8^(n-2)*(57-8^(2n-1)))/290871. - Bruno Berselli, Oct 30 2012 a(n) = Product_{i=1..3} ((-8)^(n-i+1)-1)/((-8)^i-1) (by definition). - Vincenzo Librandi, Aug 02 2016 MATHEMATICA Table[QBinomial[n, 3, -8], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *) PROG (Sage) [gaussian_binomial(n, 3, -8) for n in range(3, 15)] # Zerinvary Lajos, May 27 2009 (Magma) r:=3; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016 CROSSREFS Sequence in context: A251337 A282232 A061544 * A145528 A203058 A116331 Adjacent sequences: A015273 A015274 A015275 * A015277 A015278 A015279 KEYWORD sign,easy AUTHOR Olivier Gérard, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 17:08 EDT 2024. Contains 371749 sequences. (Running on oeis4.)