login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015272 Gaussian binomial coefficient [ n,3 ] for q = -5. 2
1, -104, 13546, -1679704, 210302171, -26279294704, 3285123767796, -410635172794704, 51329529054158421, -6416187820400919704, 802023560334345174046, -100252942972187432169704 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 3..200

Index entries for linear recurrences with constant coefficients, signature (-104,2730,13000,-15625).

FORMULA

G.f.: x^3/((1-x)*(1+5*x)*(1-25*x)*(1+125*x)). - Bruno Berselli, Oct 29 2012

a(n) = (-1 + 21*5^(2n-3) + (-1)^n*5^(n-2)*(21-5^(2n-1)))/18144. - Bruno Berselli, Oct 29 2012

MATHEMATICA

Table[QBinomial[n, 3, -5], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *)

PROG

(Sage) [gaussian_binomial(n, 3, -5) for n in range(3, 15)] # Zerinvary Lajos, May 27 2009

CROSSREFS

Sequence in context: A164759 A206013 A187700 * A048920 A091539 A157874

Adjacent sequences:  A015269 A015270 A015271 * A015273 A015274 A015275

KEYWORD

sign,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 11:11 EST 2020. Contains 331105 sequences. (Running on oeis4.)