login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014435
a(n) = Sum_{i=0..n-1} a(i)*a(n-i) with a(0)=1, a(1)=6.
2
1, 6, 6, 42, 114, 654, 2526, 13506, 61242, 321558, 1579830, 8311578, 42655938, 226373406, 1192341390, 6391471794, 34239385482, 185275416102, 1004459653734, 5480384744202, 29980061984274, 164732303389614, 907579024283454
OFFSET
0,2
LINKS
FORMULA
G.f.: ( (1+x)-sqrt(1-2*x-23*x^2) ) / (2*x).
a(n) ~ sqrt((12-sqrt(6))/23) * (1+2*sqrt(6))^(n+1) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 09 2014
G.f.: 1 + 6*x/G(x) with G(x) = (1 - x - 6*x^2/G(x)) (continued fraction). - Nikolaos Pantelidis, Dec 17 2022
MAPLE
seq(coeff(convert(series(((1+x)-sqrt(1-2*x-23*x^2))/(2*x), x, 40), polynom), x, i), i=0..25); A014435:=proc(n) options remember: local i: if n<2 then RETURN([1, 6][n+1]) else RETURN(add(A014435(i)*A014435(n-1-i), i=0..n-2)) fi:end; seq(A014435(n), n=0..25); # (C. Ronaldo)
MATHEMATICA
CoefficientList[Series[(1+x-Sqrt[1-2*x-23*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2014 *)
CROSSREFS
Sequence in context: A117859 A229159 A102901 * A175550 A219352 A262895
KEYWORD
nonn
STATUS
approved