login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=0..n-1} a(i)*a(n-i) with a(0)=1, a(1)=6.
2

%I #22 Jan 09 2023 09:31:59

%S 1,6,6,42,114,654,2526,13506,61242,321558,1579830,8311578,42655938,

%T 226373406,1192341390,6391471794,34239385482,185275416102,

%U 1004459653734,5480384744202,29980061984274,164732303389614,907579024283454

%N a(n) = Sum_{i=0..n-1} a(i)*a(n-i) with a(0)=1, a(1)=6.

%H Vincenzo Librandi, <a href="/A014435/b014435.txt">Table of n, a(n) for n = 0..200</a>

%F G.f.: ( (1+x)-sqrt(1-2*x-23*x^2) ) / (2*x).

%F a(n) ~ sqrt((12-sqrt(6))/23) * (1+2*sqrt(6))^(n+1) / (2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Feb 09 2014

%F G.f.: 1 + 6*x/G(x) with G(x) = (1 - x - 6*x^2/G(x)) (continued fraction). - _Nikolaos Pantelidis_, Dec 17 2022

%p seq(coeff(convert(series(((1+x)-sqrt(1-2*x-23*x^2))/(2*x),x,40),polynom),x,i),i=0..25); A014435:=proc(n) options remember: local i: if n<2 then RETURN([1,6][n+1]) else RETURN(add(A014435(i)*A014435(n-1-i),i=0..n-2)) fi:end;seq(A014435(n),n=0..25); # (C. Ronaldo)

%t CoefficientList[Series[(1+x-Sqrt[1-2*x-23*x^2])/(2*x), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 09 2014 *)

%K nonn

%O 0,2

%A _Wouter Meeussen_