login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014051
Inverse of 42nd cyclotomic polynomial.
4
1, -1, 1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Periodic with period length 42. - Ray Chandler, Apr 03 2017
MAPLE
with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80);
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[42, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 04 2014 *)
LinearRecurrence[{-1, 0, 1, 1, 0, -1, 0, 1, 1, 0, -1, -1}, {1, -1, 1, 0, 0, 0, 0, 1, -1, 1, 0, 0}, 81] (* Ray Chandler, Sep 15 2015 *)
PROG
(PARI) Vec(1/polcyclo(42)+O(x^99)) \\ Charles R Greathouse IV, Apr 01 2014
CROSSREFS
Cf. inverse of k-th cyclotomic polynomial: A049347 (k=3), A056594 (k=4), A010891 (k=5), A010892 (k=6), A014016 - A014045 (k=7-36), A240328 (k=37), A014047 - A014049 (k=38-40), A240329 (k=41).
Sequence in context: A266605 A016421 A014030 * A016400 A157022 A016362
KEYWORD
sign,easy
AUTHOR
STATUS
approved