login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012758
Expansion of e.g.f. arcsin(cosh(x) * log(x+1)).
0
0, 1, -1, 6, -18, 123, -855, 8610, -92540, 1220765, -17627085, 291506270, -5265113502, 105134332743, -2272750891411, 53258927842666, -1338863892701400, 36033888424535961, -1032074699069841561
OFFSET
0,4
FORMULA
a(n) ~ -(-1)^n * sqrt(1/r + sqrt(1 - r^2)/exp(r)) * n^(n-1) / (exp(n*(1-r)) * (exp(r) - 1)^(n - 1/2)), where r = 0.85490459670313737191040551709068078198... is the real root of the equation 1 + sqrt(1 - r^2) = r*exp(1 - exp(-r)). - Vaclav Kotesovec, Jul 25 2018
EXAMPLE
x - 1/2!*x^2 + 6/3!*x^3 - 18/4!*x^4 + 123/5!*x^5 ...
MATHEMATICA
Range[0, 20]! CoefficientList[ Series[ArcSin[Cosh[x] Log[x + 1]], {x, 0, 20}], x] (* Robert G. Wilson v, Jul 24 2018 *)
CROSSREFS
Sequence in context: A009580 A125839 A117813 * A208822 A003496 A009582
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
a(0) inserted and title improved by Sean A. Irvine, Jul 24 2018
STATUS
approved