|
|
A012758
|
|
Expansion of e.g.f. arcsin(cosh(x) * log(x+1)).
|
|
0
|
|
|
0, 1, -1, 6, -18, 123, -855, 8610, -92540, 1220765, -17627085, 291506270, -5265113502, 105134332743, -2272750891411, 53258927842666, -1338863892701400, 36033888424535961, -1032074699069841561
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ -(-1)^n * sqrt(1/r + sqrt(1 - r^2)/exp(r)) * n^(n-1) / (exp(n*(1-r)) * (exp(r) - 1)^(n - 1/2)), where r = 0.85490459670313737191040551709068078198... is the real root of the equation 1 + sqrt(1 - r^2) = r*exp(1 - exp(-r)). - Vaclav Kotesovec, Jul 25 2018
|
|
EXAMPLE
|
x - 1/2!*x^2 + 6/3!*x^3 - 18/4!*x^4 + 123/5!*x^5 ...
|
|
MATHEMATICA
|
Range[0, 20]! CoefficientList[ Series[ArcSin[Cosh[x] Log[x + 1]], {x, 0, 20}], x] (* Robert G. Wilson v, Jul 24 2018 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Patrick Demichel (patrick.demichel(AT)hp.com)
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|