login
A010088
Weight distribution of d=3 Hamming code of length 127.
3
1, 0, 0, 2667, 82677, 1984248, 40346376, 698136399, 10472045985, 138455313640, 1633772700952, 17377481697723, 167982323077989, 1485996809606736, 12100259735369136, 91155294690805839
OFFSET
0,4
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.
LINKS
M. Terada, J. Asatani and T. Koumoto, Weight Distribution
FORMULA
Recurrence: a(n) = (binomial(m,n-1) - a(n-1) - (m-n+2)*a(n-2))/n for n > 1, a(0)=1, a(1)=0 with m = 127. - Georg Fischer, Apr 14 2020
EXAMPLE
The weight distribution is:
i A_i
0 1
3 2667
4 82677
5 1984248
6 40346376
7 698136399
8 10472045985
9 138455313640
10 1633772700952
11 17377481697723
12 167982323077989
13 1485996809606736
14 12100259735369136
15 91155294690805839
16 638087062835640873
17 4166333146052853552
18 25460924781434105040
19 146065305483269160835
20 788752649609653468509
21 4018882547238172355016
22 19363706818511194074168
23 88399531131386119148007
24 383064634902673182974697
25 1578226295785457917668888
26 6191503160389104138547176
27 23160808118541815153990579
28 82717171851935054121394925
29 282379310804718006044407200
30 922439081962078819745063520
31 2886341643559263104694304455
32 8659024930677789314082913365
33 24927496012555862201427876960
34 68917194858242677851006483360
35 183122832051905648227574489415
36 467980570799314434359357028505
37 1150979241695602290812068499320
38 2726003467173794899291741182600
39 6220879707140218581918768313275
40 13685935355708480880221290289205
41 29040887218210637159315728230120
42 59464673827764637992884586375960
43 117546448264185993885197347489815
44 224406855777082351962649481571465
45 413905978433285078143161128429360
46 737832396337595139298678533287120
47 1271583491560536557879927855087355
48 2119305819267560929799879758478925
49 3416839994329332521610566413573200
50 5330270391153758733712483605174192
51 8047663139585087324166406321172943
52 11761969204008973781473978469406609
53 16644296043408924306591066468540936
54 22808850133560377753476646642074616
55 30273564722725593421190356524797059
56 38923154643504334398673315531881933
57 48483227713838730919011449081237592
58 58514240344288123522944852339424680
59 68431908199252213890524837937373695
60 77556162625819175742594816329023521
61 85184637638194830580902393173363904
62 90680420711626755134508999184548672
63 93559164226281574604995522172224803
64 93559164226281574604995522172224803
65 90680420711626755134508999184548672
66 85184637638194830580902393173363904
67 77556162625819175742594816329023521
68 68431908199252213890524837937373695
69 58514240344288123522944852339424680
70 48483227713838730919011449081237592
71 38923154643504334398673315531881933
72 30273564722725593421190356524797059
73 22808850133560377753476646642074616
74 16644296043408924306591066468540936
75 11761969204008973781473978469406609
76 8047663139585087324166406321172943
77 5330270391153758733712483605174192
78 3416839994329332521610566413573200
79 2119305819267560929799879758478925
80 1271583491560536557879927855087355
81 737832396337595139298678533287120
82 413905978433285078143161128429360
83 224406855777082351962649481571465
84 117546448264185993885197347489815
85 59464673827764637992884586375960
86 29040887218210637159315728230120
87 13685935355708480880221290289205
88 6220879707140218581918768313275
89 2726003467173794899291741182600
90 1150979241695602290812068499320
91 467980570799314434359357028505
92 183122832051905648227574489415
93 68917194858242677851006483360
94 24927496012555862201427876960
95 8659024930677789314082913365
96 2886341643559263104694304455
97 922439081962078819745063520
98 282379310804718006044407200
99 82717171851935054121394925
100 23160808118541815153990579
101 6191503160389104138547176
102 1578226295785457917668888
103 383064634902673182974697
104 88399531131386119148007
105 19363706818511194074168
106 4018882547238172355016
107 788752649609653468509
108 146065305483269160835
109 25460924781434105040
110 4166333146052853552
111 638087062835640873
112 91155294690805839
113 12100259735369136
114 1485996809606736
115 167982323077989
116 17377481697723
117 1633772700952
118 138455313640
119 10472045985
120 698136399
121 40346376
122 1984248
123 82677
124 2667
127 1
MATHEMATICA
m:=127; RecurrenceTable[{a[n]==(Binomial[m, n-1]-a[n-1]-(m-n+2)*a[n-2])/n,
a[0]==1, a[1]==0}, a, {n, 0, 127}] (* Georg Fischer, Apr 14 2020 *)
CROSSREFS
Row 7 of A340030.
Sequence in context: A110838 A019424 A151813 * A252301 A250855 A235253
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane. Entry revised Jul 18 2009
STATUS
approved