OFFSET
0,3
FORMULA
E.g.f.: (2*x+1)/(2*x^2+2*x+1) = 1-4*x^2/2!+24*x^3/3!-96*x^4/4!+....
Recurrence: a(n) = -2*n*a(n-1)-2*n*(n-1)*a(n-2), a(0) = 1, a(1) = 0.
a(n) = -n!/2*((-1+i)^(n+1) + (-1-i)^(n+1)) = -n!*sqrt(2)^(n+1)* cos(3*Pi*(n+1)/4).
For x > -1/2 we have (2*x+1)/(2*x^2+2*x+1) = 2*int {t = 0..inf} exp(-t*(2*x+1))*cos(t). Using this we obtain a(n) = 2*(-2)^n*int {t = 0..inf} t^n*exp(-t)*cos(t). - Peter Bala, Oct 05 2011
MATHEMATICA
nn = 26; Range[0, nn]! CoefficientList[Series[Tanh[Log[1 + 1/x]], {x, 0, nn}], x] (* T. D. Noe, Oct 05 2011 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved