login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009769
Expansion of tanh(log(1+1/x)).
1
1, 0, -4, 24, -96, 0, 5760, -80640, 645120, 0, -116121600, 2554675200, -30656102400, 0, 11158821273600, -334764638208000, 5356234211328000, 0, -3278015337332736000, 124564582818643968000, -2491291656372879360000, 0
OFFSET
0,3
FORMULA
E.g.f.: (2*x+1)/(2*x^2+2*x+1) = 1-4*x^2/2!+24*x^3/3!-96*x^4/4!+....
Recurrence: a(n) = -2*n*a(n-1)-2*n*(n-1)*a(n-2), a(0) = 1, a(1) = 0.
a(n) = -n!/2*((-1+i)^(n+1) + (-1-i)^(n+1)) = -n!*sqrt(2)^(n+1)* cos(3*Pi*(n+1)/4).
a(n) = 2^n*A009014(n). a(n) = -n!*A009116(n+1).
For x > -1/2 we have (2*x+1)/(2*x^2+2*x+1) = 2*int {t = 0..inf} exp(-t*(2*x+1))*cos(t). Using this we obtain a(n) = 2*(-2)^n*int {t = 0..inf} t^n*exp(-t)*cos(t). - Peter Bala, Oct 05 2011
MATHEMATICA
nn = 26; Range[0, nn]! CoefficientList[Series[Tanh[Log[1 + 1/x]], {x, 0, nn}], x] (* T. D. Noe, Oct 05 2011 *)
CROSSREFS
Sequence in context: A222670 A225681 A259814 * A119878 A054603 A100381
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved