login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of tanh(log(1+1/x)).
1

%I #17 Mar 09 2014 04:49:07

%S 1,0,-4,24,-96,0,5760,-80640,645120,0,-116121600,2554675200,

%T -30656102400,0,11158821273600,-334764638208000,5356234211328000,0,

%U -3278015337332736000,124564582818643968000,-2491291656372879360000,0

%N Expansion of tanh(log(1+1/x)).

%F E.g.f.: (2*x+1)/(2*x^2+2*x+1) = 1-4*x^2/2!+24*x^3/3!-96*x^4/4!+....

%F Recurrence: a(n) = -2*n*a(n-1)-2*n*(n-1)*a(n-2), a(0) = 1, a(1) = 0.

%F a(n) = -n!/2*((-1+i)^(n+1) + (-1-i)^(n+1)) = -n!*sqrt(2)^(n+1)* cos(3*Pi*(n+1)/4).

%F a(n) = 2^n*A009014(n). a(n) = -n!*A009116(n+1).

%F For x > -1/2 we have (2*x+1)/(2*x^2+2*x+1) = 2*int {t = 0..inf} exp(-t*(2*x+1))*cos(t). Using this we obtain a(n) = 2*(-2)^n*int {t = 0..inf} t^n*exp(-t)*cos(t). - _Peter Bala_, Oct 05 2011

%t nn = 26; Range[0, nn]! CoefficientList[Series[Tanh[Log[1 + 1/x]], {x, 0, nn}], x] (* _T. D. Noe_, Oct 05 2011 *)

%Y Cf. A009014, A009116.

%K sign,easy

%O 0,3

%A _R. H. Hardin_

%E Extended with signs by _Olivier Gérard_, Mar 15 1997