login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009574 Expansion of e.g.f. sinh(log(1+x))*exp(x). 1
0, 1, 1, 3, -2, 25, -129, 931, -7412, 66753, -667475, 7342291, -88107414, 1145396473, -16035550517, 240533257875, -3848532125864, 65425046139841, -1177650830516967, 22375365779822563, -447507315596451050 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..448

FORMULA

a(n) ~ n! * (-1)^(n+1) / (2*exp(1)). - Vaclav Kotesovec, Jan 23 2015

a(n) = n!/2*Sum_{k=0..n-1}(k+2)*(-1)^(n-k+1)/k!. - Vladimir Kruchinin, Dec 30 2016

a(n) = n*(1-(-1)^n*SF(n-1))/2, where SF(n) is the subfactorial A000166. - Peter Luschny, Dec 30 2016

MAPLE

seq(n*(1-(-1)^n*A000166(n-1))/2, n=0..20); # Peter Luschny, Dec 30 2016

MATHEMATICA

CoefficientList[Series[(E^x*x*(2 + x))/(2*(1 + x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2015 *)

With[{nn=20}, CoefficientList[Series[Sinh[Log[1+x]]*Exp[x], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 23 2015 *)

Table[(-1)^n*n*((-1)^n-Subfactorial[n-1])/2, {n, 0, 20}] (* Peter Luschny, Dec 30 2016 *)

PROG

(Maxima)

a(n):=n!/2*sum((k+2)*(-1)^(n-k+1)/k!, k, 0, n-1); /* Vladimir Kruchinin, Dec 30 2016 */

(Sage)

def A009574():

    a, n = 0, 0

    while True:

        yield a//2

        n += 1

        a = n*(n+1-a)

a = A009574(); [next(a) for _ in (0..20)] # Peter Luschny, Dec 30 2016

(PARI) x='x+O('x^30); concat([0], Vec(serlaplace(sinh(log(1+x))*exp(x)))) \\ G. C. Greubel, Jan 21 2018

(MAGMA) [0] cat [(&+[(k+2)*(-1)^(n-k+1)/Factorial(k): k in [0..n-1]])*( Factorial(n)/2): n in [1..30]]; // G. C. Greubel, Jan 21 2018

CROSSREFS

Cf. A000166, A054516.

Sequence in context: A090883 A100645 A132960 * A059422 A102056 A300955

Adjacent sequences:  A009571 A009572 A009573 * A009575 A009576 A009577

KEYWORD

sign,easy

AUTHOR

R. H. Hardin

EXTENSIONS

Extended with signs by Olivier Gérard, Mar 15 1997

First Mathematica program replaced by Harvey P. Dale, Mar 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 05:36 EDT 2021. Contains 348160 sequences. (Running on oeis4.)