login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009427
Expansion of e.g.f. log(1+x)/cos(tan(x)).
1
0, 1, -1, 5, -12, 109, -405, 4913, -24976, 372633, -2419425, 42646845, -338219244, 6863821509, -64452230661, 1478191260393, -16062969072000, 410493211996977, -5072547848554017, 142840036992492789, -1979718755185227180
OFFSET
0,4
LINKS
Vaclav Kotesovec, Graph - asymptotic ratio
FORMULA
a(n) ~ (n-1)! * (-1)^(n+1) / cos(tan(1)) * (1 + tan(tan(1)) / ((cos(1))^2*n)). - Vaclav Kotesovec, Jan 27 2015
MATHEMATICA
With[{m=25}, CoefficientList[Series[Log[1+x]/Cos[Tan[x]], {x, 0, m}], x]*Range[0, m]!] (* modified by G. C. Greubel, Sep 06 2023 *)
CoefficientList[Series[Log[1 + x]*Sec[Tan[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 24 2015 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)/Cos(Tan(x)) ))); // G. C. Greubel, Sep 06 2023
(SageMath)
def A009427_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( log(1+x)/cos(tan(x)) ).egf_to_ogf().list()
A009427_list(40) # G. C. Greubel, Sep 06 2023
(PARI) my(x='x+O('x^30)); concat([0], Vec(serlaplace(log(1+x)/cos(tan(x))))) \\ Joerg Arndt, Sep 06 2023
CROSSREFS
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved