login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009405
Expansion of e.g.f. log(1+x)*cos(log(1+x)).
10
0, 1, -1, -1, 12, -76, 480, -3284, 24752, -205620, 1874340, -18639820, 201028080, -2337859200, 29162187600, -388263812000, 5492326876800, -82195910554800, 1296105033322800, -21449073720082000, 371056401062968000, -6682811910274568000, 124750905841882320000
OFFSET
0,5
LINKS
FORMULA
P-recursive sequence: (n^4 + 2*n^2 + 1)*a(n) + (4*n^3 + 6*n^2 + 8*n + 3)*a(n + 1) + 3*(2*n^2 + 4*n + 3)*a(n + 2) + 2*(2*n + 3)*a(n + 3) + a(n + 4) = 0. - Velin Yanev, May 28 2024
MATHEMATICA
Table[n!*SeriesCoefficient[Log[x+1]*Cos[Log[x+1]], {x, 0, n}], {n, 0, 20}] (* Velin Yanev, May 21 2024 *)
nmax = 20; CoefficientList[Series[Log[x+1]*Cos[Log[x+1]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 29 2024 *)
RecurrenceTable[{(n^4+2*n^2+1)*a[n]+(4*n^3+6*n^2+8*n+3)*a[n+1]+3*(2*n^2+4*n+3)*a[n+2]+2*(2*n+3)*a[n+3]+a[n+4]==0, a[0]==0, a[1]==1, a[2]==-1, a[3]==-1}, a, {n, 20}] (* Velin Yanev, May 29 2024 *)
CROSSREFS
Sequence in context: A044199 A044580 A075279 * A009839 A190066 A335253
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved