login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009238
Expansion of e.g.f. exp(tan(sin(x))).
3
1, 1, 1, 2, 5, 8, 13, -64, -855, -5632, -38791, -205184, -747539, -240640, 59637061, 859820032, 9421489105, 90170851328, 573991066225, 1502445600768, -49290541346219, -1320541298393088, -20481513828195331, -272882319216148480
OFFSET
0,4
FORMULA
a(n) = Sum(m=1..n, Sum(k=m..n, (((-1)^(k-m)+1)*(Sum(j=m..k, C(j-1,m-1)*j! *2^(k-j-1) *Stirling2(k,j)*(-1)^((m+k)/2+j)))*((-1)^(n-k)+1)*Sum(i=0..k/2, (2*i-k)^n *C(k,i)*(-1)^((n+k)/2-i)))/(2^k*k!))/m!). - Vladimir Kruchinin, May 05 2011
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[Tan[Sin[x]]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 25 2011 *)
PROG
(Maxima)
a(n):=sum(sum((((-1)^(k-m)+1)*(sum(binomial(j-1, m-1)*j!*2^(k-j-1) *stirling2(k, j)*(-1)^((m+k)/2+j), j, m, k))*((-1)^(n-k)+1)*sum((2*i-k)^n *binomial(k, i)*(-1)^((n+k)/2-i), i, 0, k/2))/(2^k*k!), k, m, n)/m!, m, 1, n); /* Vladimir Kruchinin, May 05 2011 */
(PARI)
x='x+O('x^66); /* that many terms */
egf=exp(tan(sin(x))); /* = 1 + x + 1/2*x^2 + 1/3*x^3 + 5/24*x^4 + ... */
Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, May 05 2011 */
CROSSREFS
Sequence in context: A229898 A200275 A075731 * A009203 A363734 A202273
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, May 05 2011
STATUS
approved