login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009236
E.g.f. exp(sinh(x)^2) (even powers only).
1
1, 2, 20, 392, 12560, 579872, 36034880, 2874676352, 284538241280, 34058188677632, 4831480473359360, 799233222752602112, 152126941229960990720, 32947584100184816033792, 8042650107769696199720960, 2194728130327915760239542272, 664779526701915421094019399680
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=1..n}(Sum_{i=0..2*k} (-1)^i*(k-i)^(2*n)*binomial(2*k,i))*(2^(2*(n-k)) /k!)), n>0, a(0)=1. - Vladimir Kruchinin, Jun 06 2011
a(n) = 4^n*Sum_{k=0..2*n} (-1)^k*binomial(2*n, k)*B(k, 1/4)*B(2*n-k, 1/4) where B(n, x) are the Bell polynomials. - Peter Luschny, Sep 10 2017
MAPLE
A009236 := n -> 4^n*(add(binomial(2*n, k)*(-1)^k*BellB(k, 1/4)*BellB(2*n-k, 1/4), k = 0..2*n)): seq(A009236(n), n=0..16); # Peter Luschny, Sep 10 2017
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-2*j)*binomial(n-1, 2*j-1)*2^(2*j-1), j=1..n/2))
end:
a:= n-> b(2*n):
seq(a(n), n=0..16); # Alois P. Heinz, Jun 21 2021
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Sum[b[n-2*j]*Binomial[n-1, 2*j-1]*2^(2*j-1), {j, 1, n/2}]];
a[n_] := b[2*n];
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, May 21 2022, after Alois P. Heinz *)
PROG
(Maxima) a(n):=sum(sum((-1)^i*(k-i)^(2*n)*binomial(2*k, i), i, 0, 2*k)*(2^(2*(n-k))/k!), k, 1, n); /* Vladimir Kruchinin, Jun 06 2011 */
(PARI) my(x='x+O('x^40), v = Vec(serlaplace(exp(sinh(x)^2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, May 21 2022
CROSSREFS
Sequence in context: A376391 A376394 A218306 * A078698 A090728 A210896
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
STATUS
approved