login
A009236
E.g.f. exp(sinh(x)^2) (even powers only).
1
1, 2, 20, 392, 12560, 579872, 36034880, 2874676352, 284538241280, 34058188677632, 4831480473359360, 799233222752602112, 152126941229960990720, 32947584100184816033792, 8042650107769696199720960, 2194728130327915760239542272, 664779526701915421094019399680
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=1..n}(Sum_{i=0..2*k} (-1)^i*(k-i)^(2*n)*binomial(2*k,i))*(2^(2*(n-k)) /k!)), n>0, a(0)=1. - Vladimir Kruchinin, Jun 06 2011
a(n) = 4^n*Sum_{k=0..2*n} (-1)^k*binomial(2*n, k)*B(k, 1/4)*B(2*n-k, 1/4) where B(n, x) are the Bell polynomials. - Peter Luschny, Sep 10 2017
MAPLE
A009236 := n -> 4^n*(add(binomial(2*n, k)*(-1)^k*BellB(k, 1/4)*BellB(2*n-k, 1/4), k = 0..2*n)): seq(A009236(n), n=0..16); # Peter Luschny, Sep 10 2017
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-2*j)*binomial(n-1, 2*j-1)*2^(2*j-1), j=1..n/2))
end:
a:= n-> b(2*n):
seq(a(n), n=0..16); # Alois P. Heinz, Jun 21 2021
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Sum[b[n-2*j]*Binomial[n-1, 2*j-1]*2^(2*j-1), {j, 1, n/2}]];
a[n_] := b[2*n];
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, May 21 2022, after Alois P. Heinz *)
PROG
(Maxima) a(n):=sum(sum((-1)^i*(k-i)^(2*n)*binomial(2*k, i), i, 0, 2*k)*(2^(2*(n-k))/k!), k, 1, n); /* Vladimir Kruchinin, Jun 06 2011 */
(PARI) my(x='x+O('x^40), v = Vec(serlaplace(exp(sinh(x)^2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, May 21 2022
CROSSREFS
Sequence in context: A376391 A376394 A218306 * A078698 A090728 A210896
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
STATUS
approved