login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009203
Expansion of exp(sin(tan(x))).
3
1, 1, 1, 2, 5, 8, 13, -232, -2199, -25600, -218311, -2258048, -20057555, -212565376, -1933691003, -21159275264, -181405779887, -1935285600256, -10159446470927, -49976214294528, 2835996855537109, 63805712413261824
OFFSET
0,4
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n):=sum(sum(if oddp(n+k) or oddp(k-m) then 0 else (-1)^((n+k)/2)*sum(j!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n)*2^(1-m)*sum((-1)^(floor((k+m)/2)-i)*binomial(m,i)*(2*i-m)^k/k!/m!,i,0,floor(m/2)) ,k,m,n),m,1,n), n>0. - Vladimir Kruchinin, Sep 01 2010
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[Sin[Tan[x]]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 13 2018 *)
PROG
(Maxima) a(n):=sum(sum(if oddp(n+k) or oddp(k-m) then 0 else (-1)^((n+k)/2)*sum(j!*stirling2(n, j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n)*2^(1-m)*sum((-1)^(floor((k+m)/2)-i)*binomial(m, i)*(2*i-m)^k/k!/m!, i, 0, floor(m/2)) , k, m, n), m, 1, n); /* Vladimir Kruchinin, Sep 01 2010 */
CROSSREFS
Sequence in context: A200275 A075731 A009238 * A363734 A202273 A210702
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Prior Mathematica program replaced by Harvey P. Dale, Oct 13 2018
STATUS
approved