|
|
A008790
|
|
a(n) = n^(n+4).
|
|
10
|
|
|
0, 1, 64, 2187, 65536, 1953125, 60466176, 1977326743, 68719476736, 2541865828329, 100000000000000, 4177248169415651, 184884258895036416, 8650415919381337933, 426878854210636742656, 22168378200531005859375
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
|
|
FORMULA
|
E.g.f.: T*(1 +22*T +58*T^2 +24*T^3)*(1-T)^(-9); where T is Euler's tree function (see A000169). - Len Smiley, Nov 17 2001
See A008517 and A134991 for similar e.g.f.s and diagonals of A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d^4/dx^4 {x^4/(T(x)^4*(1-T(x))}, where T(x) = sum {n >= 1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012
|
|
MAPLE
|
a:=n->mul(n, k=-3..n):seq(a(n), n=0..20); # Zerinvary Lajos, Jan 26 2008
|
|
MATHEMATICA
|
Table[n^(n+4), {n, 0, 20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
|
|
PROG
|
(Magma) [n^(n+4): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
(PARI) vector(20, n, (n-1)^(n+3)) \\ G. C. Greubel, Sep 11 2019
(Sage) [n^(n+4) for n in (0..20)] # G. C. Greubel, Sep 11 2019
(GAP) List([0..20], n-> n^(n+4)); # G. C. Greubel, Sep 11 2019
|
|
CROSSREFS
|
Cf. A000169, A000272, A000312, A007778, A007830, A008785, A008786, A008787, A008788, A008789, A008791.
Sequence in context: A089458 A283280 A082559 * A183432 A017211 A221424
Adjacent sequences: A008787 A008788 A008789 * A008791 A008792 A008793
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|