Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:44:36
%S 0,1,64,2187,65536,1953125,60466176,1977326743,68719476736,
%T 2541865828329,100000000000000,4177248169415651,184884258895036416,
%U 8650415919381337933,426878854210636742656,22168378200531005859375
%N a(n) = n^(n+4).
%H Vincenzo Librandi, <a href="/A008790/b008790.txt">Table of n, a(n) for n = 0..200</a>
%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>
%F E.g.f.: T*(1 +22*T +58*T^2 +24*T^3)*(1-T)^(-9); where T is Euler's tree function (see A000169). - _Len Smiley_, Nov 17 2001
%F See A008517 and A134991 for similar e.g.f.s and diagonals of A048993. - Tom Copeland, Oct 03 2011
%F E.g.f.: d^4/dx^4 {x^4/(T(x)^4*(1-T(x))}, where T(x) = sum {n >= 1} n^(n-1)*x^n/n! is the tree function of A000169. - _Peter Bala_, Aug 05 2012
%p a:=n->mul(n,k=-3..n):seq(a(n),n=0..20); # _Zerinvary Lajos_, Jan 26 2008
%t Table[n^(n+4),{n,0,20}](* _Vladimir Joseph Stephan Orlovsky_, Dec 26 2010 *)
%o (Magma) [n^(n+4): n in [0..20]]; // _Vincenzo Librandi_, Jun 11 2013
%o (PARI) vector(20, n, (n-1)^(n+3)) \\ _G. C. Greubel_, Sep 11 2019
%o (Sage) [n^(n+4) for n in (0..20)] # _G. C. Greubel_, Sep 11 2019
%o (GAP) List([0..20], n-> n^(n+4)); # _G. C. Greubel_, Sep 11 2019
%Y Cf. A000169, A000272, A000312, A007778, A007830, A008785, A008786, A008787, A008788, A008789, A008791.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_