|
|
A008668
|
|
Molien series for 4-dimensional reflection group [3,3,5] of order 14400.
|
|
1
|
|
|
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 15, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 32, 33, 36, 37, 38, 41, 44, 45, 48, 49, 52, 55, 58, 59, 62, 65, 68, 71, 74, 75, 81, 84, 87, 90, 93, 96, 102, 105, 108, 111, 117, 120, 126, 129, 132, 138
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
COMMENTS
|
The relevant generating function is 1/((1-z^2)*(1-z^12)*(1-z^20)*(1-z^30)) and is reduced with x=z^2 below to indicate that the intermediate zeros are not listed.
Number of partitions into parts 1, 6, 10, and 15. - Joerg Arndt, Apr 29 2014
|
|
REFERENCES
|
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, no. 14. Springer Verlag, 1957, Table 10.
L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 30).
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 1, -2, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 1, -1).
|
|
FORMULA
|
G.f.: 1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)). - M. F. Hasler, Mar 26 2012
|
|
MAPLE
|
seq(coeff(series(1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)), x, n+1), x, n), n = 0 .. 80); # G. C. Greubel, Sep 08 2019
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)), {x, 0, 80}], x] (* G. C. Greubel, Sep 08 2019 *)
|
|
PROG
|
(PARI) A008668_list = n -> Vec(1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)) +O(x^n)) \\ M. F. Hasler, Mar 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)) )); // G. C. Greubel, Sep 08 2019
(Sage)
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15))).list()
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|