login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008668
Molien series for 4-dimensional reflection group [3,3,5] of order 14400.
1
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 15, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 32, 33, 36, 37, 38, 41, 44, 45, 48, 49, 52, 55, 58, 59, 62, 65, 68, 71, 74, 75, 81, 84, 87, 90, 93, 96, 102, 105, 108, 111, 117, 120, 126, 129, 132, 138
OFFSET
0,7
COMMENTS
The relevant generating function is 1/((1-z^2)*(1-z^12)*(1-z^20)*(1-z^30)) and is reduced with x=z^2 below to indicate that the intermediate zeros are not listed.
Number of partitions into parts 1, 6, 10, and 15. - Joerg Arndt, Apr 29 2014
REFERENCES
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, no. 14. Springer Verlag, 1957, Table 10.
L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 30).
LINKS
Roberto De Maria Nunes Mendes, Symmetries of spherical harmonics, Transactions of the American Mathematical Society 204 (1975): 161-178. See subgroup 68.
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 1, -2, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 1, -1).
FORMULA
G.f.: 1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)). - M. F. Hasler, Mar 26 2012
a(n) ~ 1/5400*n^3. - Ralf Stephan, Apr 29 2014
MAPLE
seq(coeff(series(1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)), x, n+1), x, n), n = 0 .. 80); # G. C. Greubel, Sep 08 2019
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)), {x, 0, 80}], x] (* G. C. Greubel, Sep 08 2019 *)
PROG
(PARI) A008668_list = n -> Vec(1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)) +O(x^n)) \\ M. F. Hasler, Mar 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15)) )); // G. C. Greubel, Sep 08 2019
(Sage)
def A008668_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^6)*(1-x^10)*(1-x^15))).list()
A008668_list(80) # G. C. Greubel, Sep 08 2019
CROSSREFS
Sequence in context: A056970 A212218 A321162 * A225643 A116563 A076695
KEYWORD
nonn
EXTENSIONS
Terms a(61) onward added by G. C. Greubel, Sep 08 2019
STATUS
approved