login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008396
Crystal ball sequence for A_10 lattice.
4
1, 111, 3191, 43561, 365751, 2181257, 10106977, 38619087, 126825227, 368750757, 970336269, 2349638259, 5303497629, 11272376259, 22745345019, 43859522037, 81262792557, 145325576067, 251806927307
OFFSET
0,2
COMMENTS
Comment from T. D. Noe, Apr 29 2007: For the formula to produce this sequence, the five minus signs should be pluses and a 1 should be added: 46189/907200*n^10 + 46189/181440*n^9 + 89947/60480*n^8 + 493207/43200*n^6 + 4812379/181440*n^4 + 43461/2800*n^2 + 26741/6048*n^7 + 171457/8640*n^5 + 111683/4536*n^3 + 7381/1260*n + 1.
Comment from N. J. A. Sloane, May 04 2007: In that case I need to recheck both the formula and the values to see which is correct.
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = 1 + 11*n*(1+n)*(483120 + 797004*n + 1233596*n^2 + 953849*n^3 + 682786*n^4 + 258791*n^5 + 105859*n^6 + 16796*n^7 + 4199*n^8)/907200.
G.f.: (1 + 100*x + 2025*x^2 + 14400*x^3 + 44100*x^4 + 63504*x^5 + 44100*x^6 + 14400*x^7 + 2025*x^8 + 100*x^9 + x^10)/(1-x)^11. - Colin Barker, May 28 2012
MAPLE
seq(1 + 11*n*(1+n)*(483120 + 797004*n + 1233596*n^2 + 953849*n^3 + 682786*n^4 + 258791*n^5 + 105859*n^6 + 16796*n^7 + 4199*n^8)/907200, n=0..40);
MATHEMATICA
CoefficientList[Series[(x^10+100x^9+2025x^8+14400x^7+44100x^6+63504x^5+44100x^4+14400x^3+2025x^2+100x+1)/(1-x)^11, {x, 0, 40}], x] (* or *)
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 111, 3191, 43561, 365751, 2181257, 10106977, 38619087, 126825227, 368750757, 970336269}, 40] (* Harvey P. Dale, Mar 15 2023 *)
PROG
(Magma) [1 +11*n*(1+n)*(483120 +797004*n +1233596*n^2 +953849*n^3 +682786*n^4 +258791*n^5 +105859*n^6 +16796*n^7 +4199*n^8)/907200: n in [0..40]]; // G. C. Greubel, May 29 2023
(SageMath)
def A008396(n): return 1 +11*n*(1+n)*(483120 +797004*n +1233596*n^2 +953849*n^3 +682786*n^4 +258791*n^5 +105859*n^6 +16796*n^7 +4199*n^8)/907200
[A008396(n) for n in range(41)] # G. C. Greubel, May 29 2023
CROSSREFS
Sequence in context: A264466 A302384 A303105 * A332950 A302956 A232080
KEYWORD
nonn,easy
STATUS
approved