OFFSET
0,2
COMMENTS
Comment from T. D. Noe, Apr 29 2007: For the formula to produce this sequence, the five minus signs should be pluses and a 1 should be added: 46189/907200*n^10 + 46189/181440*n^9 + 89947/60480*n^8 + 493207/43200*n^6 + 4812379/181440*n^4 + 43461/2800*n^2 + 26741/6048*n^7 + 171457/8640*n^5 + 111683/4536*n^3 + 7381/1260*n + 1.
Comment from N. J. A. Sloane, May 04 2007: In that case I need to recheck both the formula and the values to see which is correct.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = 1 + 11*n*(1+n)*(483120 + 797004*n + 1233596*n^2 + 953849*n^3 + 682786*n^4 + 258791*n^5 + 105859*n^6 + 16796*n^7 + 4199*n^8)/907200.
G.f.: (1 + 100*x + 2025*x^2 + 14400*x^3 + 44100*x^4 + 63504*x^5 + 44100*x^6 + 14400*x^7 + 2025*x^8 + 100*x^9 + x^10)/(1-x)^11. - Colin Barker, May 28 2012
MAPLE
seq(1 + 11*n*(1+n)*(483120 + 797004*n + 1233596*n^2 + 953849*n^3 + 682786*n^4 + 258791*n^5 + 105859*n^6 + 16796*n^7 + 4199*n^8)/907200, n=0..40);
MATHEMATICA
CoefficientList[Series[(x^10+100x^9+2025x^8+14400x^7+44100x^6+63504x^5+44100x^4+14400x^3+2025x^2+100x+1)/(1-x)^11, {x, 0, 40}], x] (* or *)
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 111, 3191, 43561, 365751, 2181257, 10106977, 38619087, 126825227, 368750757, 970336269}, 40] (* Harvey P. Dale, Mar 15 2023 *)
PROG
(Magma) [1 +11*n*(1+n)*(483120 +797004*n +1233596*n^2 +953849*n^3 +682786*n^4 +258791*n^5 +105859*n^6 +16796*n^7 +4199*n^8)/907200: n in [0..40]]; // G. C. Greubel, May 29 2023
(SageMath)
def A008396(n): return 1 +11*n*(1+n)*(483120 +797004*n +1233596*n^2 +953849*n^3 +682786*n^4 +258791*n^5 +105859*n^6 +16796*n^7 +4199*n^8)/907200
[A008396(n) for n in range(41)] # G. C. Greubel, May 29 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved