login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008348 a(0)=0; thereafter a(n) = a(n-1) + prime(n) if a(n-1) < prime(n), otherwise a(n) = a(n-1) - prime(n). 17
0, 2, 5, 0, 7, 18, 5, 22, 3, 26, 55, 24, 61, 20, 63, 16, 69, 10, 71, 4, 75, 2, 81, 164, 75, 172, 71, 174, 67, 176, 63, 190, 59, 196, 57, 206, 55, 212, 49, 216, 43, 222, 41, 232, 39, 236, 37, 248, 25, 252, 23, 256, 17, 258, 7, 264, 1, 270, 541, 264, 545, 262, 555 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) < 2*prime(n). Conjecture: a(n) > 0 for n > 3. - Thomas Ordowski, Dec 03 2016 [This conjecture is false, because a(369019)=0. The next counterexample occurs at n = 22877145. - Dmitry Kamenetsky, Feb 14 2017. (Cf. A309225.)]

LINKS

Robert Israel, Table of n, a(n) for n = 0..10000

FORMULA

a(n) = c(1)p(1) + ... + c(n)p(n), where c(i) = 1 if a(i-1) > p(i) and c(i) = -1 if a(i-1) <= p(i) (p(i) = primes). - Clark Kimberling

MAPLE

A008348 := proc(n) option remember; if n = 0 then 0 elif A008348(n-1)>=ithprime(n) then A008348(n-1)-ithprime(n); else A008348(n-1)+ithprime(n); fi; end;

# Maple from N. J. A. Sloane, Aug 31 2019 (Start)

# Riecaman transform

Riecaman := proc(a, s, M)

# Start with s, add or subtract a[n], get M terms. If a has w terms, can get M=w+1 terms.

local b, M2, n, t;

if whattype(a) <> list then ERROR("First argument should be a list"); fi;

if a[1]=0 then ERROR("a[1] should not be zero"); fi;

M2 := min(nops(a), M-1);

b:=[s]; t:=s;

for n from 1 to M2 do

   if a[n]>t then t:=t+a[n] else t:=t-a[n]; fi; b:=[op(b), t]; od:

b; end;

# Riecaman transform of primes, starting at s=0

p1:=[seq(ithprime(i), i=1..100)];

q0:=Riecaman(p1, 0, 99);

# End

MATHEMATICA

a := {0}; For[n = 2, n < 100, n++, If[a[[n - 1]] >= Prime[n - 1], b := a[[n - 1]] - Prime[n - 1], b := a[[n - 1]] + Prime[n - 1]; ]; a = Append[a, b]]; a (* Stefan Steinerberger, May 02 2006 *)

PROG

(PARI) lista(nn) = {print1(a=0, ", "); for (n=1, nn, if (a < (p=prime(n)), a += p, a -= p); print1(a, ", "); ); } \\ Michel Marcus, Dec 04 2016

CROSSREFS

Cf. A008344, A022831, A022837, A309225.

Sequence in context: A146105 A331165 A022832 * A201576 A265299 A020836

Adjacent sequences:  A008345 A008346 A008347 * A008349 A008350 A008351

KEYWORD

nonn,look

AUTHOR

N. J. A. Sloane and J. H. Conway

EXTENSIONS

More terms from Clark Kimberling

Name edited by Dmitry Kamenetsky, Feb 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 04:53 EDT 2020. Contains 335673 sequences. (Running on oeis4.)