The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006946 Independence number of De Bruijn graph of order n on two symbols. (Formerly M0834) 4
 1, 2, 3, 7, 13, 28, 55, 114, 227, 466, 931, 1891, 3781 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Proposition 4.3 (b) in Lichiardopol's paper (see links) can be formulated as a(n) <= 2^(n-1) - A000031(n)/2 + 1 for odd n. For even n, Proposition 5.4 says that a(n) <= (a(n+1) + 1)/2 <= 2^(n-1) - A000031(n+1)/4 + 1. For n<=13, equality holds in both cases, and I conjecture that it holds for all n. If this is true, the sequence would continue a(14)=7645, a(15)=15289, a(16)=30841, a(17)=61681, ... - Pontus von Brömssen, Feb 29 2020 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Pontus von Brömssen, Maximum independent sets for de Bruijn graphs of order 8 to 13 N. Lichiardopol, Independence number of de Bruijn graphs, Discrete Math., 306 (2006), no.12, 1145-1160. [Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 07 2010] Eric Weisstein's World of Mathematics, de Bruijn Graph Eric Weisstein's World of Mathematics, Independence Number MATHEMATICA Length /@ Table[FindIndependentVertexSet[DeBruijnGraph[2, n]][[1]], {n, 6}] PROG (Python) import networkx as nx def deBruijn(n): return nx.MultiDiGraph(((0, 0), (0, 0))) if n==0 else nx.line_graph(deBruijn(n-1)) def A006946(n): return nx.graph_clique_number(nx.complement(nx.Graph(deBruijn(n)))) # Pontus von Brömssen, Mar 07 2020 CROSSREFS Cf. A000031, A333077, A333078. Sequence in context: A088172 A048573 A221834 * A074129 A233042 A055003 Adjacent sequences:  A006943 A006944 A006945 * A006947 A006948 A006949 KEYWORD nonn,more,hard,changed AUTHOR N. J. A. Sloane, Herb Taylor EXTENSIONS a(7) from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 07 2010 a(8) to a(13) from Pontus von Brömssen, Feb 29 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 15:16 EDT 2020. Contains 333107 sequences. (Running on oeis4.)