OFFSET
0,3
COMMENTS
Number of standard tableaux of shape (n,n,n,n). - Emeric Deutsch, May 13 2004
The prime terms (as defined in A268538) are 1, 1, 10, 320, 16764, 1171355, 99315236, 9691755128, 1053114415100, ... - R. J. Mathar, Feb 27 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Snover, Stephen L.; Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..423 (terms 1..130 from Alois P. Heinz)
Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - N. J. A. Sloane, Jul 07 2012
Michaƫl Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
K. Gorska and K. A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
S. Snover, Letter to N. J. A. Sloane, May 1991
S. F. Troyer & S. L. Snover, m-Dimensional Catalan numbers, Preprint, 1989. (Annotated scanned copy)
FORMULA
a(n) = 12*(4*n)!/(n! *(n+1)! *(n+2)! *(n+3)!).
G.f.: 4_F_3 ( [ 1, 3/2, 5/4, 7/4 ]; [ 3, 4, 5 ]; 256 x ).
a(n) ~ 3*2^(8*n+3/2)/(Pi^(3/2)*n^(15/2)). - Vaclav Kotesovec, Nov 18 2016
E.g.f.: 3F3(1/4,1/2,3/4; 2,3,4; 256*x) - 1. - Ilya Gutkovskiy, Oct 13 2017
(n+3)*(n+2)*(n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 04 2018
MAPLE
a:= n-> (4*n)! * mul(i!/(4+i)!, i=0..n-1):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2012
MATHEMATICA
Table[12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!), {n, 0, 20}] (* Vaclav Kotesovec, Nov 18 2016 *)
PROG
(Magma) [12*Factorial(4*n)/(Factorial(n)*Factorial(n+1)*Factorial(n+2) *Factorial(n+3)): n in [0..20]]; // Vincenzo Librandi, Nov 23 2018
(PARI) vector(20, n, n--; 12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!)) \\ G. C. Greubel, Nov 23 2018
(Sage) [12*factorial(4*n)/(factorial(n)*factorial(n+1)*factorial(n+2) *factorial(n+3)) for n in range(20)] # G. C. Greubel, Nov 23 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, Nov 23 2018
STATUS
approved