login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005790
4-dimensional Catalan numbers.
(Formerly M4954)
10
1, 1, 14, 462, 24024, 1662804, 140229804, 13672405890, 1489877926680, 177295473274920, 22661585038594320, 3073259571003214320, 438091463242348309440, 65166105157299311029200, 10056663345892631910888600, 1602608179958939072505281850, 262708662267696303439658400600
OFFSET
0,3
COMMENTS
Number of standard tableaux of shape (n,n,n,n). - Emeric Deutsch, May 13 2004
The prime terms (as defined in A268538) are 1, 1, 10, 320, 16764, 1171355, 99315236, 9691755128, 1053114415100, ... - R. J. Mathar, Feb 27 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Snover, Stephen L.; Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..423 (terms 1..130 from Alois P. Heinz)
Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - N. J. A. Sloane, Jul 07 2012
Michaël Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
K. Gorska and K. A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
S. F. Troyer & S. L. Snover, m-Dimensional Catalan numbers, Preprint, 1989. (Annotated scanned copy)
FORMULA
a(n) = 12*(4*n)!/(n! *(n+1)! *(n+2)! *(n+3)!).
G.f.: 4_F_3 ( [ 1, 3/2, 5/4, 7/4 ]; [ 3, 4, 5 ]; 256 x ).
a(n) ~ 3*2^(8*n+3/2)/(Pi^(3/2)*n^(15/2)). - Vaclav Kotesovec, Nov 18 2016
E.g.f.: 3F3(1/4,1/2,3/4; 2,3,4; 256*x) - 1. - Ilya Gutkovskiy, Oct 13 2017
(n+3)*(n+2)*(n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 04 2018
MAPLE
a:= n-> (4*n)! * mul(i!/(4+i)!, i=0..n-1):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2012
MATHEMATICA
Table[12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!), {n, 0, 20}] (* Vaclav Kotesovec, Nov 18 2016 *)
PROG
(Magma) [12*Factorial(4*n)/(Factorial(n)*Factorial(n+1)*Factorial(n+2) *Factorial(n+3)): n in [0..20]]; // Vincenzo Librandi, Nov 23 2018
(PARI) vector(20, n, n--; 12*(4*n)!/(n!*(n+1)!*(n+2)!*(n+3)!)) \\ G. C. Greubel, Nov 23 2018
(Sage) [12*factorial(4*n)/(factorial(n)*factorial(n+1)*factorial(n+2) *factorial(n+3)) for n in range(20)] # G. C. Greubel, Nov 23 2018
CROSSREFS
A row of A060854.
Cf. A000108 (Catalan numbers), A005789, A005791.
Sequence in context: A319096 A297548 A215787 * A208563 A200061 A171208
KEYWORD
nonn,easy
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, Nov 23 2018
STATUS
approved