OFFSET
0,3
COMMENTS
Number of standard tableaux of shape (n,n,n,n,n). - Emeric Deutsch, May 13 2004
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Snover, Stephen L.; Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..294
Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - N. J. A. Sloane, Jul 07 2012
K. Gorska and K. A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013, and Prob. Math. Stat. 33 (2) (2013) 265-274.
S. Snover, Letter to N. J. A. Sloane, May 1991
S. F. Troyer & S. L. Snover, m-Dimensional Catalan numbers, Preprint, 1989. (Annotated scanned copy)
FORMULA
a(n) = 0!*1!*..*(k-1)! *(k*n)! / ( n!*(n+1)!*..*(n+k-1)! ) for k=5.
(n+4)*(n+3)*(n+2)*(n+1)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Aug 10 2015
G.f.: x*5F4(1,6/5,7/5,8/5,9/5;3,4,5,6;3125*x). - R. J. Mathar, Aug 10 2015
a(n) ~ 72*5^(5*n+1/2)/(Pi^2*n^12). - Vaclav Kotesovec, Nov 18 2016
E.g.f.: 4F4(1/5,2/5,3/5,4/5; 2,3,4,5; 3125*x). - Ilya Gutkovskiy, Oct 13 2017
MAPLE
a:= n-> (5*n)! * mul(i!/(n+i)!, i=0..4):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 23 2017
MATHEMATICA
Table[288*(5*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!), {n, 1, 20}] (* Vaclav Kotesovec, Nov 18 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jul 23 2017
STATUS
approved