OFFSET
1,3
COMMENTS
This sequence also describes the number of trees on 2n vertices that are in P-position (a player 2 win) in unrooted UVG (Undirected Vertex Geography). This connection is discussed by Fraenkel, Scheinerman, and Ullman in their paper "Undirected Edge Geography." - Kaitlin Bruegge, Jul 14 2017
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..400
Aviezri S. Fraenkel, Edward R. Scheinerman, and Daniel Ullman, Undirected Edge Geography, Theoretical Computer Science, 112, (1993), 371-381.
Indranil Ghosh, Python program for computing this sequence (translated from Maple code)
Rodica Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1991), 93-104.
Rodica Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1981), 97. (Annotated scanned copy)
FORMULA
a(n) ~ c * d^n / n^(5/2), where d = A245870 = 5.646542616232949712892713..., c = 0.1128580768964135711615258... . - Vaclav Kotesovec, Aug 25 2014
EXAMPLE
a(3)=2; indeed we have the path P_6 and the tree obtained by identifying one endpoint of each of P_2, P_3, and P_3. - Emeric Deutsch, Apr 13 2014
MAPLE
with(numtheory): r2:= proc(n) option remember; local m; `if`(n=1, 1, 2/(n-1) *add(r2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: p2:= proc(n) option remember; local m; `if`(n=1, 1, 1/(n-1) *add(p2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: m2:= n-> (r2(n) -add(r2(m) *r2(n-m), m=1..n-1) +`if`(irem(n, 2)=0, r2(n/2), p2((n+1)/2)))/2: seq(m2(n), n=1..30); # Alois P. Heinz, Aug 04 2009
MATHEMATICA
r2[n_] := r2[n] = If[n == 1, 1, 2/(n-1)*Sum[r2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; p2[n_] := p2[n] = If[n == 1, 1, 1/(n-1)*Sum[p2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; m2[n_] := (r2[n] - Sum[r2[m]*r2[n-m], {m, 1, n-1}] + If[Mod[n, 2] == 0, r2[n/2], p2[(n+1)/2]])/2; Table[m2[n], {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Aug 04 2009
STATUS
approved