Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1478 #69 Jan 25 2020 01:44:04
%S 1,1,2,5,15,49,180,701,2891,12371,54564,246319,1133602,5300255,
%T 25119554,120441076,583373822,2851023191,14044428996,69677569603,
%U 347904448580,1747195558582,8820848574074,44747514381341,228004950808983,1166498678253839,5990376960443432
%N Number of matched trees with 2n nodes.
%C This sequence also describes the number of trees on 2n vertices that are in P-position (a player 2 win) in unrooted UVG (Undirected Vertex Geography). This connection is discussed by Fraenkel, Scheinerman, and Ullman in their paper "Undirected Edge Geography." - _Kaitlin Bruegge_, Jul 14 2017
%D S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A005751/b005751.txt">Table of n, a(n) for n = 1..400</a>
%H Aviezri S. Fraenkel, Edward R. Scheinerman, and Daniel Ullman, <a href="https://doi.org/10.1016/0304-3975(93)90026-P">Undirected Edge Geography</a>, Theoretical Computer Science, 112, (1993), 371-381.
%H Indranil Ghosh, <a href="/A005751/a005751.txt">Python program for computing this sequence</a> (translated from Maple code)
%H Rodica Simion, <a href="http://dx.doi.org/10.1016/0012-365X(91)90061-6">Trees with 1-factors and oriented trees</a>, Discrete Math., 88 (1991), 93-104.
%H Rodica Simion, <a href="/A005750/a005750.pdf">Trees with 1-factors and oriented trees</a>, Discrete Math., 88 (1981), 97. (Annotated scanned copy)
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F a(n) ~ c * d^n / n^(5/2), where d = A245870 = 5.646542616232949712892713..., c = 0.1128580768964135711615258... . - _Vaclav Kotesovec_, Aug 25 2014
%e a(3)=2; indeed we have the path P_6 and the tree obtained by identifying one endpoint of each of P_2, P_3, and P_3. - _Emeric Deutsch_, Apr 13 2014
%p with(numtheory): r2:= proc(n) option remember; local m; `if`(n=1, 1, 2/(n-1) *add(r2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: p2:= proc(n) option remember; local m; `if`(n=1, 1, 1/(n-1) *add(p2(m) *add(d*r2(d), d=divisors(n-m)), m=1..n-1)) end: m2:= n-> (r2(n) -add(r2(m) *r2(n-m), m=1..n-1) +`if`(irem(n, 2)=0, r2(n/2), p2((n+1)/2)))/2: seq(m2(n), n=1..30); # _Alois P. Heinz_, Aug 04 2009
%t r2[n_] := r2[n] = If[n == 1, 1, 2/(n-1)*Sum[r2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; p2[n_] := p2[n] = If[n == 1, 1, 1/(n-1)*Sum[p2[m]*Sum[d*r2[d], {d, Divisors[n-m]}], {m, 1, n-1}]]; m2[n_] := (r2[n] - Sum[r2[m]*r2[n-m], {m, 1, n-1}] + If[Mod[n, 2] == 0, r2[n/2], p2[(n+1)/2]])/2; Table[m2[n], {n, 1, 30}] (* _Jean-François Alcover_, Mar 17 2014, after _Alois P. Heinz_ *)
%Y Cf. A000151 for the rooted version.
%Y Cf. A245870.
%K nonn
%O 1,3
%A _N. J. A. Sloane_
%E More terms from _Alois P. Heinz_, Aug 04 2009