login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000734
Boustrophedon transform of 1,1,2,4,8,16,32,...
5
1, 2, 5, 15, 49, 177, 715, 3255, 16689, 95777, 609875, 4270695, 32624329, 269995377, 2406363835, 22979029335, 234062319969, 2533147494977, 29027730898595, 351112918079175, 4470508510495609, 59766296291090577
OFFSET
0,2
COMMENTS
Binomial transform of A062272. - Paul Barry, Jan 21 2005
LINKS
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
N. J. A. Sloane, Transforms.
FORMULA
E.g.f.: (1 + exp(2*x))*(sec(x) + tan(x))/2. - Paul Barry, Jan 21 2005
a(n) ~ n! * (1 + exp(Pi)) * (2/Pi)^(n+1). - Vaclav Kotesovec, Oct 07 2013
MATHEMATICA
CoefficientList[Series[(1+E^(2*x))*(Sec[x]+Tan[x])/2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)
t[n_, 0] := If[n == 0, 1, 2^(n-1)]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n - 1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
PROG
(Sage) # Algorithm of L. Seidel (1877)
def A000734_list(n) :
A = {-1:0, 0:1}; R = []
k = 0; e = 1; Bm = 1
for i in range(n) :
Am = Bm
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
Bm += Bm
R.append(A[e*i//2]/2)
return R
A000734_list(22) # Peter Luschny, Jun 02 2012
(Haskell)
a000734 n = sum $ zipWith (*) (a109449_row n) (1 : a000079_list)
-- Reinhard Zumkeller, Nov 04 2013
(Python)
from itertools import count, accumulate, islice
def A000734_gen(): # generator of terms
yield 1
blist, m = (1, ), 1
while True:
yield (blist := tuple(accumulate(reversed(blist), initial=m)))[-1]
m *= 2
A000734_list = list(islice(A000734_gen(), 40)) # Chai Wah Wu, Jun 12 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved