login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005684
Number of Twopins positions.
(Formerly M1019)
1
1, 2, 4, 6, 11, 18, 32, 52, 88, 142, 236, 382, 629, 1018, 1664, 2692, 4383, 7092, 11520, 18640, 30232, 48916, 79264, 128252, 207705, 336074, 544084
OFFSET
6,2
REFERENCES
R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: x^6/( (x^2+x-1)*(x^2-x+1)*(x^4+x^2-1) ). - Ralf Stephan, Apr 21 2004
MAPLE
A005684:=1/(z**2-z+1)/(z**2+z-1)/(z**4+z**2-1); [Simon Plouffe in his 1992 dissertation.]
CROSSREFS
Sequence in context: A328669 A185192 A007053 * A260697 A018167 A295831
KEYWORD
nonn
AUTHOR
STATUS
approved