login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005523
a(n) = maximal number of rational points on an elliptic curve over GF(q), where q = A246655(n) is the n-th prime power > 1.
(Formerly M3757)
9
5, 7, 9, 10, 13, 14, 16, 18, 21, 25, 26, 28, 33, 36, 38, 40, 43, 44, 50, 54, 57, 61, 64, 68, 75, 77, 81, 84, 88, 91, 97, 100, 102, 108, 117, 122, 124, 128, 130, 135, 144, 148, 150, 150, 154, 161, 163, 174, 176, 183, 189, 193, 196, 200, 206, 208, 219, 221, 226, 228, 241, 253, 258, 260
OFFSET
1,1
COMMENTS
The successive values of q are 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, ... (see A246655).
REFERENCES
J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. See N_q(1) on page 51.
J.-P. Serre, Oeuvres, vol. 3, pp. 658-663 and 664-669.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272.
W. C. Waterhouse, Abelian varieties over finite fields, Ann Sci. E.N.S., (4) 2 (1969), 521-560.
Eric Weisstein's World of Mathematics, Rational Point.
FORMULA
a(n) <= q + 1 + 2*sqrt(q) where q = A246655(n) [Hasse theorem]. - Sean A. Irvine, Jun 26 2020
a(n) = q + 1 + floor(2*sqrt(q)) if p does not divide floor(2*sqrt(q)), q is a square, or q = p. Otherwise a(n) = q + floor(2*sqrt(q)) where q = A246655(n) [Waterhouse 1969]. - Robin Visser, Aug 02 2023
EXAMPLE
a(1) = 5 because 5 is the maximal number of rational points on an elliptic curve over GF(2),
a(2) = 7 because 7 is the maximal number of rational points on an elliptic curve over GF(3),
a(3) = 9 because 9 is the maximal number of rational points on an elliptic curve over GF(4).
PROG
(Sage)
for q in range(1, 1000):
if Integer(q).is_prime_power():
p = Integer(q).prime_factors()[0]
if (floor(2*sqrt(q))%p != 0) or (Integer(q).is_square()) or (q==p):
print(q + 1 + floor(2*sqrt(q)))
else:
print(q + floor(2*sqrt(q))) # Robin Visser, Aug 02 2023
CROSSREFS
Sequence in context: A184110 A138892 A190202 * A037084 A018935 A039501
KEYWORD
nonn,easy
EXTENSIONS
Reworded definition and changed offset so as to clarify the indexing. - N. J. A. Sloane, Jan 08 2017
More terms from Robin Visser, Aug 02 2023
STATUS
approved